
r

System Manual

GE-645

LSB 0468

~ Information
\t!}!J Systems

large Systems
Department

@ 1968 by General Electric Company

GE-645

SYSTEM MANUAL

W), Information
~~ Systems

Large Systems
Department

January 1968

In the construction of the equipment described, the General Electric Company
reserves the right to modify the design for reasons of improved performance and
operational flexibility.

GENERAL ELECTRIC

INFORMATION SYSTEMS EQUIPMENT DIVISION

PREFACE

Part I of this manual provides· an introduction to the
GE-645 Information Processing System. The first two
chapters trace the thinking which brought about the
development of an advanced information processing
service concept. This concept assumes computer service
available in the same way electricity is made available
simultaneously to many users. The GE-645 is aimed at
providing this type of service. Chapter 3 provides a
summary which allows the readers to obtain a general

ii

understanding of how the GE-645 approaches this prob­
lem.

Part II provides moderately detailed information about
the major hardware components of the GE-645 System
and contains a generalized deSCription of the objectives
and planned operational features of the Multics Operating
System and related software as currently being developed
for the GE-645 System.

ACKNOWLEDGEMENT

Multics (Multiplex Information and Computing Service)
is an operating system concept developed from research
by the Massachusetts Institute of Technology, Bell Tele­
phone Laboratories and the General Electric Company.
It draws upon the design and operating experience gained
with CTSS (Compatible Time-Sharing System) at the
Computation Center and Project MAC of the Massachusetts

Institute of Technology, and upon programming language
research and system principles from Bell Telephone Lab­
oratories.

The descriptive material on Multics contained in this
document is derived from the technical objectives es­
t,ablished by the above organizations for the continuing
implementation of that concept on the GE-645 System.

©®~[pfA1'iJ'orn[lJ~~!®®® ____________ _
iii

1.

2.

3.

4.

5.

6.

7.

8.

CONTENTS

PART I. Introduction to the GE-645 System

PROBLEM STATEMENT •

DESIGN CONCEPTS

SYSTEM SUMMARY

Total System . . .
Hardware
Software

Operating System

PART II. GE-645 System Description

HARDWARE SYSTEM CHARACTERISTICS

Hardware System Organization
System Configurations.
Connecting Input/Output Devices to the System

SYSTEM CONTROLLER MODULE

Storage Function
Control Signals

Connect Instruction
Interrupt Cells

System Clock. . . .

PROCESSOR MODULE

Modes of Operation .
Register Descriptions
Instruction Repertoire
Address Modification
Segmentation. . .
Descriptor Segment .
Paging
Associative Memory
Faults and Interrupts
Privileged Operation
Access Control

GENERALIZED INPUT/OUTPUT CONTROLLER

Channels
Adapters
GlOC Controller.

EXTENDED MEMORY MODULE .

Organization

©®~[pffi'[fOrn[]J~~!®®® ____________ _
iv

Page

1

3

5

5
5
7

7

9

9
10
11

15

15
15

15
15

16

17

17
17
18
19
20
21
27
29
29
34
35

37

37
37
42

45

45

9.

10.

11.

A.

B.

CONTENTS (Cont)
Performance Characteristics
Operation
Test Modes •

SYSTEM CONFIGURATION CONSOLE

Reconfiguration
Reconfiguration Data
Master/Slave Reconfiguration .
System Status Display
Operator Teletypewriter Station .
System Initialization and Bootload .

PERIPHERAL AND TERMINAL EQUIPMENT

Peripheral Equipment

Disc Storage Unit (DSUIOF)
Disc Storage Unit (DSU204). . . .
Magnetic Drum Storage Unit (MDU200)
Mass Storage Unit (MSU388) ~.
Magnetic Tape Subsystem.
Card Reader and Control (CRZ201) .
Card Punch and Control (CPZ201). , . . .
ASCII Extended Character Set Printer (PRT202)
Perforated Tape Subsystem (PTS200)
Peripheral Switch Console (PSC200)

Terminal Equipment

GE-115 Information Processing System .
Datanet-760 Keyboard/Display Subsystem

MULTICS

Concepts
User Interaction with Multics
Supervisor. . .
Command System
File System
File Structure. .
Basic File System
Multilevel and Backup System
I/O System

•.)1
.;~ .

APPENDICES

INSTRUCTION REPERTOIRE .

HARDWARE SUMMARY

@®~[pffi'[f~rn[L~~j®®® ____________ _

v

Page

45
45
46

47

47
47
49
49
49
49

51

51

51
53
55
56
58
59
61
62
64
65

65

66
68

71

71
72
73
74
75
75
76
77

81

89

GE-S45 SYSTEM

PART 1.
INTRODUCTION TO THE GE-645 SYSTEM

1. PROBLEM STATEMENT

During the early growth period of computers, a computer
was a unique and complex piece of equipment, but
was too expensive to give to each person with a prob­
lem. In order to justify the cost of a computer and to
take advantage of its speed, batch processing became the
standard mode of operation. A staff of experts was
required to manage, program, and operate the computer.
As a result, the man with the problem gradually had
barriers placed before him, and he became more removed
from the computer.

The computer language was a primary barrier. The man
with the problem didn't know how to state the problem
in a language acceptable to the computer. Specialists
were called in who understood the computer languages,
but didn't understand the problem. As the problem
passed from specialist to specialist, it went through
several stages of translation. The elapsed time from
problem statement to problem solution was lengthened,
and often a clear statement of the original problem
was lost in the several translations. As the layers of
computer specialists became thicker, the computer grad­
ually became less accessible to the man with a problem.

Computer technology developed at a rapid pace. How­
ever, much of the development was concerned with
computer equipment and computer techniques, and very
little was concerned with the techniques required to
make the computer a convenient tool for solving in­
dividual problems. Many times, the person with a prob­
lem must have said, "I'd put more work on the com­
puter if it weren't such a chore." In frustration, he
used methods not well suited to the needs of the problem.

The computer schedule was another barrier placed be­
tween the computer and the man with a problem.
A computer was scheduled in order to get maximum
use of the equipment. However, the tight schedules
set for maximum use of equipment were not realistic,
were difficult to enforce, and caused almost everyone
to endure a long turnaround time waiting for the results.
Additionally, all jobs; regardless of priorities, were put
aside for demonstrations, maintenance, and real-time
problems.

Despite the best scheduling efforts; full equipment uti­
lization could not be maintained. The entire computer
system became unavailable when certain peripherals (e.g.,
typewriter or card reader) became unavailable. At other
times the computer system was idle for many minutes
waiting for tapes to be mounted or cards to be placed
in the card reader. When performance characteristics
of separate computer components were examined in
conjunction with the requirements of the particular prob­
lems being solved, it was found that some parts were
idle while other parts operated at full speed. During

calculations for a scientific problem, the input/output
section worked only intermittently while the processor
worked continuously; however, during calculations for
a business problem, the processor worked part time
while the input/output was kept busy.

The allocation of storage media was another problem
closely associated with scheduling. Did management really
have control of the costs in the computer system? A
junior programmer could easily accumulate 50 reels of
magnetic tape and collect drawer after drawer of cards.
Who determined when it was more economical to store
data in magnetic core, on magnetic tape, or on magnetic
drum? Decisions were based on an individual's past ex­
perience rather than on statistics gathered from group
experience over a longer period of time.

As middle and upper management took a broader view
of the problems, the need to share programs and data
files among several groups became apparent. In some
instances, different groups worked on separate portions
of the same large problem and each group developed
its own set of programs and data meso In other situations,
hardware and software limitations made it difficult for
one group to utilize the mes of another. A tremendous
amount of this information should have been centralized
and made available to several different groups at the
same time. This lack of integration led to wasteful
duplication of effort and fell short in supplying the
total information overview sought by management.

Periodically, new and expanding computer applications
required users to increase the size of their hardware
systems. However, this was difficult and expensive when
whole systems had to be added or replaced. Without
hardware modularity, an entire hardware system consisting
of all three capabilities (processing, storage, input/output)
had to be added to provide more of anyone capability.
To take advantage of the new hardware configuration,
applications had to be reprogrammed, often at considerable
cost to the user.

The evolution and growth of the computer has not stopped.
The technology associated with computers and their appli­
cation continues to evolve at an ever increasing rate. In
order for the computer to continue to serve the needs
of business, industry, science, education, and government,
the above problems must be solved, and the barriers
between the computer and the man with a problem
must be eliminated.

Specifically the next generation information processing
service must provide:

• Dependable operation

©@~[f)[ir[]'~rnQJ~~t®®® _________ ~ ____ _

• Remote terminals to communicate with the utility
center

• Simple user-oriented languages for communication of
problems and solutions

• Short turnaround time to permit direct interaction
with the computer

• Full multiprogramming batch processing capability

• Concurrent operation of interactive jobs and batch
processing jobs with high efficiency

• Memory management that frees the user from any
concern about how to fit his program and data into
the system

• Input/output management that frees the user from
any concern about input/output operations, unless
he wishes otherwise

• A storage system which permits easy sharing of data
and programs

• File protection mechanisms to ensure that access to
mes is restricted as specified by the owners

• Modular hardware to meet the user's changing needs

• Modular software to permit its dynamic modification

• Mechanisms to permit management control over re­
source usage

• Bookkeeping procedures to record resource usage and
charge users appropriately

• Clear, readable reference and training material to guide
users, operators, maintenance engineers, and admin­
istrators in the use and control of the system.

Much of the necessary technology already exists. Many
types of input/output terminals can be connected to
the computer. Remote terminals (e.g. unit record de­
vices, teletypewriters, graphic displays) can be placed
at locations convenient for the user. Many users can
have access to a computer and to its resources from
different locations at the same time. The problem is
to integrate the existing and developing technologies
into a complete, reliable, and economical system.

©@~[pfAYO'~rn[U~~!®®® ________________ _
2

2. DESIGN CONCEPTS

New and carefully integrated system designs were needed
for both hardware and software to approach the objectives
of the next generation information processing service. Hard­
ware features had to be provided to enable software super­
visors to achieve their goals with required efficiency. Soft­
ware systems had to be developed to exploit these hard­
ware capabilities and to provide new levels of user service.
As a result there evolved the GE-645 Computer System
which uses the Multics Operating System. The following
paragraphs outline the resulting design and functional con­
cepts established for the overall GE-645 Computer System
with the Multics Operating System.

The tasks which the man with a problem requests to be
performed will normally take very little computer time to
execute. Thus each user can proceed in the solution of his
problem without being delayed by the computer. He is al­
lowed to interact with the computer as it achieves the re­
sults he desires. The vast resources of the system are his to
command. While using these resources, he has the impres­
sion that he is the sole user.

Once he has learned a few simple rules and system comands,
the man with a problem can guide the compu ter through
the steps of his problem solution from the keyboard of his
remote terminal. If he is a novice in programming, he can
obtain a useful knowledge of one of the simpler program­
ming languages in a few hours. If he is an experienced pro­
grammer and wants greater power and flexibility, he can
employ any of the widely used languages in the industry.
Even when the GE-645, operating under Multics, is inter­
acting with users at remote terminals, it can concurrently
serve users with batch processing work.

When operating under control of Multics, a user is not con­
cerned about the size of his program or data storage. Mul­
tics automatically moves unused parts of his program to
secondary storage. Hence, both the information currently in
core memory and that which Multics has placed in sec­
ondary storage are available to the user. In spite of the
actual physical location of user programs and data, they
appear to him as if they were all in core memory.

Multics allows a user to declare the degree of privacy to be
observed in the use of each of his files. He may declare a
file to be private, public, or accessible only to a specific
list of other users. He can further restrict the use of a file by
declaring the manner in which it may be accessed. For ex­
ample, a file containing a program could be made public
for purposes of execution but private for purposes of read­
ing and modification.

A user may find it convenient to use subprograms or data
which are provided br Multics or made available to him by
other users. In fact, some programs and data files may be

needed concurrently by many users. Multics enables many
users to share programs and data files. In essence, the sys­
tem provides storage facilities analogous to the combined
resources of a public library (public system files), the li­
brary of co-workers (shared files), and a personal library
(private files).

Multiprogramming allows adequate service to be provided
to all classes of users. I t permits processing part of one pro­
gram, then part of a second, then part of a third, etc. This
allows multiple programs to receive service in rapid succes­
sion giving the appearance that they are all being executed
simultaneously. If this technique were not used, each user
would need to await the completion of many other user
programs before having an opportunity to utilize a proces­
sor. Without multiprogramming, interactive users would ex­
perience intolerable delays.

The total processing capability of the system is increased by
having multiple processors execute multiple programs con­
currently. This technique is known as multiprocessing.

The control of the processors is directed from one user pro­
gram to another by Multics. Every time a new program is
placed in execution, special registers are initialized which
prevent damage to information belonging to any other user
or the operating system.

Large memories are made available in the GE-645 hardware.
Through their use, many programs and their data may be
stored concurrently awaiting execution. Even with the
large memories available on the GE-645, it is generally im­
possible to allow the programs and data of all users to re­
side in core memory throughout their execution. The num­
ber of users that can be serviced by the GE-645 is made
large by providing a high-speed fixed-head magnetic disc
unit for moving information rapidly into and out of core
memory. The number of users that can be serviced is also
increased by employing the techniques of paging and seg­
mentation.

In the concept of paging, a program is divided into pieces of
equal size called pages. When the program is in execution,
only its most active pages reside in core storage. Its less ac­
tive pages are stored in the secondary storage hierarchy.

In the GE-645 the management of paged programs is facil­
itated by special hardware which makes the pages appear to
be in contiguous locations even though they may be widely
separated in core memory. The hardware also keeps track of
which pages have been altered while they are in core mem­
ory so that unaltered/pages need not be rerecorded in sec­
ondary storage when they are removed from core memory.

©@~[Pmu~W[U~~!®®® ____________ _

3

Segmentation allows a program to be divided into separate
parts called segments. Each segment can be thought of as a
separate core memory with its own origin and maximum
size. One of the important features of segments is that they
may be shared among many users. Hence, only a single
copy of a program or data file need exist if these are prop­
erly stored in the segment being accessed by many users.

A second important property of segments is that they al­
low a user to collect in effectively separate memories infor­
mation with like characteristics. For example, some or all
of the unalterable information of a program can be brought
together into a "read only" segment. This not only pro­
tects the information from inadvertent modification but
also collects information which will never need to be re­
written to secondary storage during the paging operation.

Modular hardware lets the user reconfigure a system to fit
the changing needs brought about by growth. A system can

4

consist of multiple memory, processor, and input/output
controller modules. The modular hardware lets the user as­
semble a combination of modules that most closely fits his
current need. This reconfiguration can take place without
providing an excess of unwanted modules. For example,
one processor module can be added when additional pro­
cessing is needed, or one input/output controller and/or
peripheral devices can be added when greater input/output
capability is needed.

Modular software is a direct result of segmentation, and
makes it practical to alter the operating system to fit com­
puting needs. It also allows the operating system mainte­
nance group to make appropriate improvements and modifi­
cations that are of benefit to the user. The same program­
~ing standards are used in Multics as in user programs so
that maximum consistency and flexibility is achieved with­
in the system.

3. SYSTEM SUMMARY

The previous chapters have discussed the general problems
facing the user, the objectives of the GE-645 system, and
the design concepts which enable the system to solve the
Vser's problems. This chapter contains a brief view of the
total hardware-software system followed by descriptions of
the hardware and its components, and the software system
and its components. Should the reader desire more infor­
mation than is contained in this chapter, he may refer to
Part II.

TOTAL SYSTEM

The GE-645 is a large-scale, high-performance, binary com­
puting system that operates with the Multics operating sys­
tem, several language processors, and a wide variety of ap­
plication packages. Most of the equipment is located at the
computer center, while terminals are placed in locations
convenient for the users of the system.

HARDWARE

The hardware consists of four types of modules, peripheral
and terminal equipment, and common carrier facilities for_
the terminals, The four module types are processor, gen­
eralized input/output controller (GIOC), system controller
(memory), and extended memory. A full range of periph­
erals is available, from p~rforated tape units to large, high- I

speed discs. Terminals that may be used range from slow
speed teletypewriters to complex display consoles and com­
puters. Terminals are connected to the system with stan­
dard, presently-available communication equipment.

A typical hardware system organization is shown in Figure
1. In this example, two processors, four system control­
lers, two GIOCs, and one extended memory module are
combined to form a nine-module system, together with a
system configuration console. The figure shows the inter­
connections between the nine modules and the way that
the peripherals and terminals are connected to the system.

The system configuration console establishes the basic pa­
rameters of the system configuration that make it possible
for the modules to communicate with one another through
the system controllers. The SCC also provides the means
for rapid re-configuration of these parameters and for ini­
tiating the bootloading operation for placing the system in
operation. A teletypewriter can be connected to the SCC to
provide a printed copy of the "conversations" between the
operator and the ope~ating system.

The processor modules do the computation and decision­
making in the system. Many registers and an associative
(content:"addressable) memory are provided in each pro­
cessor to facilitate rapid execution of powerful instruc­
tions. Performance is also enhanced with instruction

overlap: that is, address preparation for the next in­
struction and fetching of subsequent instructions con­
tinue while the current instruction is being executed.
The instruction repertoire is large and varied, and has
404 operation codes currently defined. (This leaves 108
operation codes reserved for future upward growth.)
A wide range of conventional instructions is supple­
mented with many special-purpose instructions and
several instructions specifically for character manipulation.
Address modification includes conventional register modifi­
cation and multilevel indirect addressing plus several varia­
tions particularly aimed at character manipulation and op­
erating on stacks. All hardware manipulation related to seg­
mentation and paging is done by a processor.

The GIOC modules handle all input/output for peripherals
and terminals. (Note that the extended memory module is
independent of the GIOC.) Input/output operations on a
given GIOC are performed concurrently but independently
of each other. The detailed actions to be performed during
an input/output operatiqn are specified in a list of control
words stored in memory. Once a processor sets up the con­
trol words and initiates an input/output operation, the
GIOC obtains the control words from memory and trans­
fers data without any further processor action.

System controller modules contain the system's high-speed
storage, the system's time clocks, and serve as control com­
munication paths between the processor, GIOC, and ex­
tended memory modules. A system controller module con­
sists of 32k, 64k, or 128k 36-bit words with a storage cycle
time of one microsecond. The system can move data in
groups of 6, 9, 18, 36, or 72 bits into or out of memory.
The system clock consists of a calendar clock and an alarm
register. The clock is located in a system controller module
so that all processors can use the same clock. Thus, all pro­
cessors use the same time base and perform time calcula­
tions in a consistent manner. Each system controller also
contains a group of interrupt cells. These cells are used by a
processor, GIOC, and extended memory module to notify
the operating system of the occurrence of special events.

Memory is addressed in an interlaced manner. When a block
of data is transferred into or out of memory, the data ac­
cesses are distributed among the system controller modules.
This prevents a data transfer to the extended memory mod­
ule, for example, from putting a heavy load on just one sys­
tem controller and thereby effectively preventing other
modules from using that system controller.

The extended memory module is a flXed-head disc which
is used as an extension of memory. The capacity is four
million words. The disc performance characteristics were
carefully designed to match it to the GE-645 system. The

©®~[P[jJ'[j'OOO[L~~j'®OOOO ____________ _
5

Processor
Module

System
Controller

Module

GlOC
Module

Peripherals With
Single I/O Path:

Printers
Card Readers
Card Punches
Perforated Tape
Magnetic Card

System
Controller

Module

System
Configuration

Console

To All Modu les

Extended
Memory
Module

Peripherals With
Multiple I/O Paths:

Magnetic Disc
Magnetic Tape
Magnetic Drum

System
Controller

Module

Communication Lines:

High Speed Lines
Private Lines
Switched-Network Lines

Teletypewriters
Remote Computers
Graphic Displays
Experimental Facilities

Figure L Hardware System Organization

Processor
Module

Peripherals With
Single I/O Path:

Printers
Card Readers
Card Punches
Perforated Tape
Magnetic Card

System
Controller

Module

GIOC
Module

©@~[?illu~rn[lJ~~!l®®® ____________ _
6

block sizes used for information' transfer are the same size
as the pages handled by the processor: 64 or 1024 words. A
transfer rate of 470,000 words per second was chosen to
minimize the time required to move a block of data, yet
not be so fast that memory is overloaded when the ex­
tended memory unit is transferring data.

The kinds of peripheral and remote terminal equipment
associated with the GE-645 are:

Large moving-head disc

Magnetic drum

Magnetic card

Magnetic tape

Card reader

Card punch

Printer

Perforated tape

Typewriter-like devices

Other computers (for both normal I/O and for experi­
mental facilities.)

Graphic displays

The system shown in Figure 1 has nine modules. The sys­
tem can be expanded to a maximum of sixteen modules:
eight system controller modules and a combination of
processor, GIOC, and extended memory modules.

The separation of the major system functions into several
modules provides hardware redundancy in case of equip­
ment failure and facilitates system growth. The proper
quantities of the various types of modules may be combined
to create a system that is well suited to the workload.
Peripherals and terminals also have this modular property.
Peripherals which operate at high speeds and require little
operator attention are connected to both GIOCs to im­
prove system performance and provide more than one path
in case a GlOC should ever malfunction.

SOFTWARE

The GE-645 software consists of the Multics operating sys­
tem, language processors, application packages, and com­
patible GE-625/635 series programs. The general capabil­
ities of the operating system will be described briefly.

OPERATING SYSTEM

Multics (Multiplex Information and Computing Service) is
an operating system being developed from research by
Massachusetts Institute of Technology, Bell Telephone
Laboratories, and General Electric. It draws upon the de­
sign and operating experience gained with CTSS (Com­
patible Time-Sharing System) at the Massachusetts Institute
of Technology Computation Center and Project MAC.

The four major elements of Multics are the supervisor,
the command system, the me system, and the input/output
system. The operational features and objectives of these
major elements are briefly described below.

The supervisor determines the sequence in which various
us~r programs and the Multics modules serving them are
executed. Each user is alloted a fair share of available pro­
cessor time by the supervisor. The supervisor contains the
scheduler. Under normal circumstances the scheduler guar­
antees that interactive users may proceed at full speed and
that batch processing jobs are completed before the speci­
fied deadlines. The supervisor also measures and records the
amount of system resources expended by each user.

The command system examines the input from a user's
terminal looking for a command and its arguments, SUch as
"typeout mydata". When a command and its arguments are
found, they are changed from user-oriented format into
hardware-executable format. The module that executes' the
command is then called. The command system can be used
by batch users by substituting a file containing commands
for a terminal.

The me system frees the user from concern over the phys­
ical location of any of his information. He refers to his pro­
grams or data by name. The file system stores and catalogs
them in its storage hierarchy. If the program or data is not
in core memory when it is referenced, it is automatically re­
trieved and made available. The file system allows all users
to retain as much information as they wish in machine­
accessible secondary storage. In most cases the use of re­
movable media such as cards and magnetic tape is unneces­
sary. It moves little-used information to devices with longer
access time to allow ample space on faster devices for more
frequently-used files. The file system provides information
to a user when he requests it and protects it from accidental
destruction. At the same time the file system allows files to
be shared among authorized users.

The input/output system uses the GlOC to perform all
reading and writing of information to peripheral and ter­
minal devices. It provides a way for users to communicate
with specific devices in cases where the device-independent
input/output of the me system is not suitable. The input!
output system performs the code conversion, queuing, and
buffering needed by specific devices.

©®~[pill'O'~rn[L~~!®®® ____________ _

7

PART II.
GE-645 SYSTEM DESCRIPTION

©®~[?UJ'[j'~rn[}J~~t~OOOO __________ _

4. HARDW ARE SYSTEM CHARACTERISTICS

This chapter discusses several overall system features
and implications so that the reader may better under­
stand the total hardware system. The topics covered
in this chapter include hardware system organization,
various system configurations, and connecting input/output
devices to the system.

HARDWARE SYSTEM ORGANIZATION

Considerable modularity is provided in the system for
several reasons. The user may select various modules
and peripherals in order to tailor his system to his
particular work load. Modules and peripherals may be
added to a system at any time without changing the
users' programs or the software. Only configuration tables
in Multics need to be changed. The user system may
also grow in a different way. An existing module or
peripheral may be replaced by a higher performance
module or peripheral of the same type, yielding improved
system performance. Considerable hardware redundancy
also exists in a typical system so that if, for example,
a processor module should malfunction and have to
be removed from the system, a processor module is
still left in the system so that the system can continue
operation.

The system in Figure 1 has multiple paths to many
of the modules, peripherals, and terminals. Multiple paths
between modules increase system performance by per­
mitting memory interlacing. (See Chapter 5, System Con­
troller Module, for details.) Multiple paths to peripherals
also increase system performance. For example, both
GIOCs can perform input/output operations with a disc
subsystem simultaneously. Another significant advantage
of multiple paths becomes evident when one considers
hardware malfunctions. Most components of the system
have more than one path to them; therefore, the mal­
functioning of one component does not isolate any
multiple-path component.

Peripherals such as printers and card readers are ordinarily
connected to only one G10C because they are allocated
to only one user at a time. An operator can, for example,
move an operation from a printer on one GIOC to
a printer on a different G10C if the first printer or
its G10C should have a problem. If desired, a single
input/output path peripheral can be connected to both
GIOCs. This requires another hardware unit, a peripheral
switch, which is discussed later in this chapter.

The paths between modules, peripherals, and terminals
pass through "ports" in modules and "data channels"
in GIOCs. Ports and data channels are terms for the
hardware at the boundary of a module and are illustrated
in Figure 2.

System
Controller

Module

GIOC

~--~Ports

- ___) Data Channel

Peripheral or Terminal

Figure 2. Distinction Between Ports and Data Channels

All types of modules - processor, G10C, system con­
troller and extended memory - can have up to eight
ports. Thus, the maximum number of modules in a
system is sixteen: eight system controller modules, and
eight modules of some combination of processors, GIOCs,
and extended memory units.

Multiple processors, GIOCs and extended memory modules
(EMMs) allow simultaneous functions to be occurring,
however a priority scheme must exist for access to a
system controller. The ports on a system controller are
lettered A through H and A has a higher priority than
B, B higher than C, etc. The order of active module
priority is established by the . order in which the cables
are connected to the system controller. For best system
operation the priority order should be EMM, G10C,
processor. The extended memory module is highest be­
cause it has a high transfer rate· and delay can result in
transfer timing errors. The GIOCs are next for the same
reason, except the transfer rates are lower. Under normal
circumstances the processor does not experience transfer
timing errors.

Control of the system involves the system configuration
console and one or more teletypewriters. The system
configuration console displays a summary of the con­
figuration status of every module at the computer center.
Portions of the display will be of interest to the operator.
Another major function of the system configuration con­
sole is the provision of a way to initialize the system and
start the bootloading operation from one central point.

©@[DJ[?ffi'iY~rn[1J~~!®®® ____________ _

9

Although a teletypewriter is not physicalJy part of the
system configuration console, it is a necessary part of
the total system control. More than one teletypewriter
may be used, with messages for certain units sent to a
teletypewriter that is physically located near those units.
Thus, printer messages would be typed near the printers
and messages for overall control of the system would
be typed near the system configuration console. The
printed record of the conversations between the operator
and the operating system can be quite valuable in moni­
toring system performance and in troubleshooting certain
malfunctions. Each of the teletypewriters is connected
to a GIOC through a standard communication line interface.
Chapter 9 covers the system configuration console.

Processors, GIOCs and extended memory modules all
form 24-bit absolute addresses. This permits use of over

16 million words of memory. Memories of this size are
not available for initial GE-645 systems. The 16-million­
word addressing capability exists to facilitate future growth
of the system.

SYSTEM CONFIGURATIONS

Most of the discussions so far in this manual have centered
around Figure 1. Although this figure represents a typical
system, there are obviously many other possible system
configurations. Some of these are shown in Table 1,
where the middle column indicates the quantities that
might be present in the typical system of Figure 1. Since
the number of terminals that may be connected to the
system is not directly reflected in the amount of hardware
present in the computer center, what is shown in the
table for terminals is the number of terminal-type input!
output channels in the total system.

TABLE 1
SYSTEM CONFIGURATIONS

System Configuration Console

Processor

GIOC

System Controller
Number of modules
Total capacity (Words)

Extended Memory Unit
Number of modules
Total capacity (Words)

Fixed disc (words)

Magnetic card (words)

Magnetic tape handlers

Printers

Card Readers

Card Punches

Perforated Tape

Channels for teletypewriters

Channels for voice-grade
communication lines for
remote terminals such as

DATANET*-760
GE-115

* Reg. Trademark of General Electric Company

Small

2
128k

1
4096k

33M

4

2

64

10

Quantities
Typical

Fig. 1

1

2

2

4
256k

1
4096k

67M

113M

16

4

2

2

192

12

k= 1024
M= million

Large

2

4

3

8
1024k

1
4096k

134M

226M

32

6

3

2

2

384

18

It is quite important that the reader realize that the
quantities shown in Table 1 illustrate only three of
the many possible system configurations. The actual
quantities to order for a particular installation depend
strongly on the workload and applications to be run
at that installation. One installation may need more
mass storage and fewer terminal channels than the quan­
tities shown, while another installation might need more
printers and magnetic tapes and fewer terminal chan­
nels. A dedicated time sharing system might require
more terminal channels and disc storage but fewer tapes,
printers and card equipment. Also, the functional con­
figuration of a particular installation can be changed from
hour to hour from the system configuration console.

CONNECTING INPUT/OUTPUT DEVICES TO THE
SYSTEM

There are several ways to connect both peripherals and
terminals to a GE-64S system. These are briefly dis­
cussed to show the reader how peripherals and terminals
may be connected to best suit his needs.

Figure 3 illustrates the connection of single-channel periph­
erals to a GIOC. Both single device (card reader) and
multiple device (magnetic card) subsystems are shown.

Card
Reader

GIOC

Magnetic
Card

Controller

Magnetic
Card
Units

Figure 3. Single-Channel Peripherals Connected to a GlOC

System performance is improved by using more than
one input/output channel for multiple-device subsystems.
An example is the dual channel magnetic tape subsystem
shown in Figure 4. Two independent operations may
take place simultaneously, and either GlOC may use
any tape handler.

GIOC

Magnetic
Tape

Controller

• • •

GIOC

Figure 4. Multiple-Channel Peripheral Connected
to two GlOC's

Additional flexibility is available by using a peripheral
switch. Details on peripheral switches are given in Chapter
10. Briefly, a peripheral switch provides a rapid way to
disconnect a peripheral from one GIOC and connect
it to anoth~r GIOC and vice-versa. Two examples of
this are given in Figures 5 and 6. With these basic elements

,more complex switching configuration (i.e. cross bar) can
be produced to meet specific site requirements.

Terminals may also be connected to the system in several
ways. In general, the user at a terminal will dial into
the system in order to become connected. There are
many possible paths through the switching network. De­
pending on the path taken, the user may be connected
to either GlOC. And since many of the paths go to the
same GIOC, his connection may be to anyone of several
channels within the GIOC. In order to dial in, the
user must have a data set in his terminal. The general
data set usage is illustrated in Figure 7.

©@~[pffi'U'Orn[L~~j®®® ____________ _
11

Gloe

eard
Reader

Gloe

Peripheral
Switch

Figure 5. A Peripheral Switch and Two GlOC's

Line
Printer

Gloe

Peripheral
Switch

Line
Printer

Figure 6. A Peripheral Switch and Two Peripherals

©@~[pillu~rn[L[~~t®®® ____________ _
12

Local

GIOC

Communication Line and
Switching Network

Data Sets

Figure 7. General Data Set Usage

Local
Connection

Terminal

A distinction must be made between the number of
terminals which have the capability of being connected
to the system and the maximum number of terminals
which may be connected at any given time. The former
may be far larger than the latter. As an example, suppose
that a system is capable of connecting and operating
200 terminals simultaneously. There could be 2,000 ter­
minals which, at one time or another, are able to be
connected to the system. However, as long as not more

than 10 percent of these users wish to be connected to
the system at any given moment, there is no problem
or conflict.

Supervisory
Terminal

Maintenance
Terminal

t •

Private
Lines

GIOC

~- •

Normally a terminal is connected to a GlOC through
a common carrier switching network as has been dis­
cussed. In certain situations, the terminal may bypass
the switching network and utilize a private line (see
Figure 8).

GIOC

4
t_ .

Common Carrier

4

Supervif>ory
Terminal

Maintenance
Terminal

+- Data Sets.

Switching Network

• • •
Private L

(Leased or Cu
ines
stomer
d) Supplie

~~ ______________ ~,,~ ____________ -JJ

Lines To/From Terminals

Figure 8. Bypassing the Switching Network

©®~[pilllY~rn[U~~!OOOOOO ____________ _
13

s. SYSTEM CONTROLLER MODULE

The system controller modules serve as the center for
communications between the other modules in the GE-645
system by providing the following functions:

• Core memory for storage of instructions, control words,
and data.

• Central point for forwarding control signals from one
active module to another.

• System clock for providing data and time-of-day in­
formation, together with the ability to interrupt a
processor module at a predetermined time.

Each system controller has up to eight ports for connection
to processors, GIOCs and extended memory modules.
One of these ports is designated as the control port,
and the processor connected to that port is called the
control processor. Thus each system controller has a
control processor.

STORAGE FUNCTION

A system controller may contain 32k, 64k, or 128k of
36-bit words (plus parity); and has a cycle time of one
microsecond. Either one or two words can be read or
written in one memory access. It is also possible to
store one 6-bit or 9-bit character in a word without
disturbing the other characters in the same word.

In order to store or retrieve information, a processor,
GIOC, or extended memory module sends a command,
and address, and the necessary data to the appropriate
system controller. The system controller executes the
command and either stores the received data or sends
the desired data to the requesting module. The requesting
module performs the conversion from relative to absolute
addresses, when this conversion is necessary, before the
address is sent to the system controller.

Five commands are used by the processors, GIOCs, and
extended memory controllers for data transfer:

Read Restore, Single precision (not used by extended
controllers)

Read Restore, Double precision

Clear Write, Single precision

Clear Write, Double precision

Read Alter Rewrite (used only by processor)

The Read Alter Rewrite command makes it possible for
a processor to read and alter the contents of a memory

location during a single memory cycle, so that no other
active unit can gain access to that location while it
is being altered. This is a very useful characteristic of the
GE-645 in a multi-processor environment.

A typical GE-645 system has more than one system
controller. Memory access requests are distributed among
the various system controllers by a memory interlace
technique. This equalizes the load among the system
controllers and increases system performance by decreasing
the competition and queueing of requests for the same
physical system controller. Although the circuitry that
controls interlacing is located in the processors, GIOCs,
and extended memory modules, interlacing is discussed
in this chapter because of its close connection with the
storage function.

There can be two-way interlace, four-way interlace, or
no interlace. The choice is a basic parameter of the system
configuration, normally established at the system con­
figuration console. Memory addressing by the hardware
is actually done by pairs of words, so it is more correct
to speak of pairs of memory addresses. Therefore, with
four system controllers, A, B, C, and D, and no inter­
lacing, sequential pairs of addresses fall in succession
into system controller A until it has been filled, then
start filling system controller B, etc. Two-way interlace
has sequential pairs of addresses located so that the
first pair is in system controller A, the second pair in B,
and the third pair in A, etc. With four-way interlace,
the location of sequential pairs of addresses rotates
among the four system controllers - A, B, C, D, A, B,
C, D, etc. The effect of the types of interlace is sum­
marized in Table 2, with system controller A arbitrarily
selected as the initial. system controller.

CONTROL SIGNALS

CONNECT INSTRUCTIONS

When a processor executes a Connect instruction, the
system controller which contains the Connect Operand
Word immediately forwards the Connect Operand Word
and a Connect signal to the module specified in Connect
Operand Word. The recipient module may be a GlOC,
an extended memory unit, or another processor.

INTERRUPT CELLS

A group of 32 interrupt cells are located in each system
controller. These interrupt cells are used by the GE-645
hardware modules to notify Multics that some event has
occurred which needs attention. An interrupt cell may be
set by a GIOC, an extended memory unit, a processor,
or by the system clock. When an interrupt cell is set,
the system controller notifies its control processor of

©@~[pill[]'~rn[L[E~J ®mm ____________ _

15

TABLE 2
EXAMPLE OF TYPES OF INTERLACE

Word Pair None

START+ 0,1 System Controller A

START+ 2, 3 A

START+4,5 A

START+ 6, 7 A

START+ 8, 9 A

START+ 10,11 A

START+ 12, 13 A

START+ 14,15 A

this fact, along with the cell number, so that the source
of the interrupt can be identified. The control processor
stops what it is doing and jumps to a software routine
designed for handling that particular interrupt cell. Multics
can temporarily inhibit the interrupting action of any
interrupt cell or cells with the aid of a 32-bit interrupt
mask register that is also located in each system controller,
or by making use of the interrupt-inhibit bit in each
instruction.

SYSTEM CLOCK

The system clock consists of a calendar clock and an
alarm register. The calendar clock is a 52-bit binary
counter which counts at one microsecond intervals, pro­
viding a capacity greater than 142 years without over­
flowing. The program can read the contents of the
calendar clock with a precision of one microsecond.
The clock accuracy is better than 5 parts per million
(3 seconds/week) and can· be improved by using an
external stable reference.

Type of Interlace
Two-Way Four-Way

System Controller A System Controller A

B B

A C

B D

A A

B B

A C

B D

The 142-year capacity of the calendar clock makes it
possible for the software to operate on Universal Time.
To accomplish this the General Electric field engineer
must set the calendar clock to the number of micro­
seconds since midnight, January 1, 1901, Greenwich
Mean Time. Although a processor can read the calendar
clock at any time, provision for setting it under program
control is deliberately omitted, so that programming
errors or hardware malfunctions outside the clock cannot
destroy the current time.

The alarm register has the same 142-year capacity and
can be set by the software. The value in the alarm
register has a resolution of 64 microseconds and is
continuously compared to the changing time in the
calendar clock by special hardware in the system clock.
When the calendar clock reaches the time preset in the
alarm register, an interrupt cell is set. This causes a
program interrupt and notifies Multics that the desired
instant of time has arrived.

©@~[pffiLf~rn[L~~!®illill ____________ _

16

6. PROCESSOR MODULE

Most of the advanced capabilities of the GE-645 which
are seen by its users are provided by the processor. The
processor module has full program execution capability
and conducts all actual computational processing within
the GE-645 system. The processor performs instruction
fetching, address preparation, memory protection, data
fetching and data storing. These functions are overlaped
to provide the highest rate of instruction execution.

The GE-645 Processor (CP8031) contains all the general
features of the GE-635 Processor except for Base Address
Register and the two associated instructions (See Appendix
A) plus the following additional features:

• hardware for handling segments and pages.

• hardware to generate 24-bit memory addresses.

• an associative memory to speed up address generation
for segments and pages.

• ten program addressable registers used in segment and
page address preparation.

• more extensive address modification capability.

• instructions to handle the segmentation and paging

The full segmentation and paging capability of the pro­
cessor is used in the master and slave modes for fetching
instructions and operands. The addressing in the absolute
mode does not use any of the segmentation and paging
capability except for a limited case of operand references.

REGISTER DESCRIPTIONS

The program-accessible processor registers are:

Quantity Name Length

Accumulator Register 36 bits

1 Quotient Register 36 bits

Exponent Register 8 bits

8 Index Registers 18 bits each

1 Timer Register 24 bits

1 Instruction Counter. 18 bits

Indicator Register 18 bits

hardware and the system clock. 1 Descriptor Base Register 29 bits

• several levels of memory access permission.

• several new processor faults.

• a modified Timer Register to also count memory
accesses.

• a maximum of eight ports for connection to System
Controller modules.

• logic for remote configuration from system configura­
tion console.

• storage for up to four instructions within the processor
in various stages of address preparation and execution.

MODES OF OPERATION

The processor has three modes of operation: absolute,
master and slave. All instructions are available in absolute
and master modes. Most, but not all, of the instructions
are available in slave mode. General users are restricted
to the slave mode and hence are prevented from executing
any instructions that will damage other programs or
Multics. Privileged instructions such as those which op­
erate upon the descriptor base register, the system clocks,
and input/output devices are available only in the absolute
and master modes.

Procedure Base Register 18 bits

8 Address Base Registers 24 bits each

The Accumulator (A) Register is used:

• As an operand register for all classes of single-precision
(36 bit) operations. For floating-point operations, the
fixed point part is in the A register and the exponent
is in the Exponent Register.

• For address modification. Each half of the A register
can hold an index value. The left half is called A
Upper (AlJ) and the right half A Lower (AL).

The Quotient (Q) Register is used in the same ways
as the A register, with the halves called QU and QL.

The AQ Register, which is the combined A and Q
registers, is used as the operand register for all double­
precision (72 bit) operations. For floating-point opera­
tions, the fixed point part is in the A or AQ register
and the exponent is in the exponent register.

The Exponent Register holds the exponent in floating-point
operations with the fixed point part in either the A
or the AQ register.

©@~[pffi'[]'orn[L~~!®®® ______________ _

17

The Index Registers are used during address modification.
These registers can also be used as half-precision fixed point
operand registers.

The Timer Re 'ster TR counts a 64 kHz clock (15.625
microsecon inteIV as in the GE-635, or can be switched
to count the number of memory access cycles. Multics
uses the timer register to count memory accesses for
a measurement of processor utilization. The register can
be set· to an initial value which, when counted down to
zero, causes a processor fault in the slave mode. This
register should not be confused with the system clock
in the System Controller Module.

The Instruction Counter (IC) partially specifies the next
instruction to be executed. Details will be discussed
in the segmentation portion of this chapter.

The Indicator Refster contains a group of indicators
that specify or hoI certain processor states.

The various indicators are:

Zero

Negative

Carry

Overflow

Exponent Overflow

Exponent Underflow

Overflow Mask (can inhibit overflow recognition)

o 17 18

Tally Runout

Parity Error

Parity Mask (can inhibit parity error recognition)

Absolute Mode (use only IC for instruction fetching)

INSTRUCTION REPERTOIRE

For the GE-645 , there are a possible 512 instructions
of which 404 have been assigned. This leaves 108 opera­
tion codes for upward growth. A list of the assigned
instructions is included in Appendix A.

The GE-645 instructions are listed and described according
to operations for: data movement, arithmetic, logical,
compa,rison, control, shifting, and special operations. Many
of the GE-645 instructions are familiar to experienced
programmers of large scale computers. In addition to
the familiar ones, there are other instructions to facilitate:
segmentation and paging, saving and restoring of reg­
isters, character handling, decision making, and list pro­
cessing.

INSTRUCTION FORMAT

Most of the instructions have the following format. A
few special instructions have a format adapted to their
unique functions.

26 27 28 29 30 35

Address or operand Op Code o r Modifier

18 bits 9 bits

The address or operand field specifies information used
in addreSSing an operand or contains the operand.

The operation code field specifies the operation to be
performed and the registers to be used.

Bit 27 is not used and must be zero for upward com­
patibility with future systems.

Bit 28 is used under certain conditions to inhibit a
program interrupt.

Bit 29 specifies how the address field" is to be interpreted.
See Base Registers, Page 22.

The modifier field specifies the kind of address modifica­
tion to be used. Possibilities include: (1) no modification,
(2) which register to use, (3) indirect or not, and

6 bits

(4) several special-purpose modification methods that
Significantly increase the power of the instructions.

DATA MOVEMENT OPERATION

These instructions move data between the system's core
memory and the processor registers, indicators, and as­
sociative memory. They include half, single, and double­
precision operations. Also 6 and 9 bit characters can
be handled.

ARITHMETIC OPERATIONS

These instructions include fixed and floating point; half,
single, and double-precision; and placement of results
in registers or memory.

©@[DJ[pillu~rn~~~t®®® ____________ _
18

LOGICAL OPERATIONS

These instructions include single and double-precision,
and placement of results in registers or memory.

COMPARISON OPERATIONS

These instructions include logical, fixed, and floating-point
comparisons on half, single, and double-precision operands.
The results of a comparison are saved in certain indicators
for later testing by control instructions.

CONTROL OPERATIONS

These instructions include normal transfers, conditional
transfers, and some special instructions which simulta­
neously transfer control and restore various registers.

SHIFTING OPERATIONS

These operations include shift and rotate instructions
using the A, Q, and AQ registers.

o 17 18

Address Tally

There are four classes of address modification: (1) register,
(2) register then indirect, (3) indirect then register, and
(4) indirect then tally. These are described briefly below.
Modification registers are the 8 index registers, plus
the AU, AL, QU, QL, and IC registers. Direct operand
modifiers may be used to treat the address directly
as the operand.

REGISTER MODIFICATION (R)

29

An effective address is produced by adding the contents
of a modification register to the contents of the instruc­
tion's address field.

REGISTER THEN INDIRECT (RI)

The indicated register modification of the address is
performed (as with R) to obtain an indirect word,
then the modificatiqn specified in the indirect word
is conducted. Address modification in an indirect word
is specified in the same manner as in an instruction
word.

INDIRECT THEN REGISTER (IR)

The indirect word is obtained using the original address,
then the modification specified in the indirect word
is conducted. Upon completion of the indirect addressing
string the indicated register modification in the last
IR word (instruction or indirect word) encountered is
performed.

SPECIAL OPERATIONS

An important instruction in this class is the Connect,
which initiates all input/output operations and provides
a method of communicating between processors. Another
group of instructions enables one or two instructions
to be repeated without having to continually fetch the
instruction(s) from memory. Other instructions provide
a way to execute one or two instructions which are not
in the sequential string of instructions being executed,
provide entries to the operating system, convert a binary
number to its binary-coded-decimal equivalent, and con­
vert a Gray Code wor!1 to a binary equivalent.

ADDRESS MODIFICATION

A comprehensive set of address modification features
includes both modification of addresses by the con­
tents of registers and multi-level indirect addressing. The
general format of the indirect words is:

30 35

Modifier

INDIRECT THEN TALLY (IT)

The indirect word is obtained using the original address.
Then one of the 15 possible sequences below is performed.

Mnemonic

I

ID

AD

IDC

DI

Indirect - The address field of the indirect
word is used for the operand address without
further change. Tally and modifier fields are
unused.

Increment Address, Decrement Tally - The
address field of the indirect word is incre­
mented by 1 and the tally is decremented
by I after the address field is used for the
operand address. The modifier field is unused.

Add Delta - This is the same as ID except
delta is added to the address. Delta is the
value in the modifier field of the indirect word.

Increment Address, Decrement Tally and Con­
tinue - This is the same as ID except the ad-
dress field in the indirect word specified another
indirect word and the modifier field is inter­
preted in the normal manner.

Decrement Address, Increment Tally - The
address field of the indirect word is decre­
mented by 1 and the tally is incremented by
I before the address field is used for the
operand address. The modifier field is unused.

©@~[pffiu~rn[]J~~!®®® ____________ ___

19

SD

DIC

CI

Subtract Delta - This is the same as DI
except delta is subtraCted·· frbm the address.
Delta is the value in the modifier field of
the indirect word.

Decrement Address; Increment Tally and Con­
tinue - This is the same as DI except the
address field in the indirect word specifies
that of another indirect word and the modifier
field is intepreted in the normal manner.

Character from Indirect - The indirect word
specifies an address and a character position
which are used for an operand character ad­
dress without change. The character size (6
or 9 bits) and position is specified by the
modifier field. The tally field is unused.

SC Sequence Character - The character position
(in modifier field) is incremented by 1 and the
tally is decremented by 1 after the indirect
word address field and character position are
used for the operand character address. When
the character position tries to exceed the maxi­
mum value (3 or 5) it is reset to 0, and the ad­
dress field is incremented by 1. The character
size is also specified in the modifier field.

SCR Sequence Character Reversed - This is the
reverse of SC. The character position is dec­
remented by 1 and the tally is incremented
by 1 before the indirect word address field
and character position are used for the operand
character address. When the character position
tries to go negative it is set to the maximum
value (3 or 5), and the address field is dec­
remented by 1. The character size is also
specified in the modifier field.

F Fault 1 - This modifier causes Processor
Fault Tag 1. (See Interrupt and Fault section
of this chapter.)

F2 Fault 2 This modifier causes Processor
Fault Tag 2.

F3 Fault 3 - This modifier causes Processor
Fault Tag 3.

ITS Indirect to Segment - This will be discussed
in the Segmentation section of this chapter.

ITB Indirect to Base - This will be discussed in
the Segmentation section of this chapter.

SEGMENT A TION

Segmentation has been used in some form or other
throughout the fields of computation and information
processing for several years. In the GE-645, this familiar

concept takes on added power and increased significance.
In the past, program segments have generally consisted
of subprograms and/or storage areas, and were combined
into a single program by a loader prior to execution.
This method of operation provided several important
advantages over compiling or assembling entire programs
prior to their execution. These advantages are preserved
in the GE-645 segmentation, and other capabilities are
added. Some of the added capabilities are:

• The ability for the same copy of a segment to be
simultaneously shared by many users without making
special prearrangements.

• The ability to allow individual segments to vary dy­
namically in size without influenCing the addressing
of other segments.

• The ability to address programs larger than available
core memory.

• The ability for each segment to possess unique at­
tributes to prevent misuse.

Significant among the advantages of segmentation is the
facility it supplies, for use of pure procedures. These
are procedures which are not altered during their execution.
As used in the GE-645 , a segment can be identified as
pure procedure and invoked by any user to perform
its function on his own data. This provides two economies
in the multi-user GE-645. First, only one copy of a pure
procedure need exist to be shared by all its users; second,
pure procedures constitute an important class of in­
formation that need never by rewritten to secondary
storage.

It is often desirable to write a program that can operate
on variable size data arrays. In previous computer sys­
tems it has been necessary to use complex overlaying
techniques or to place an upper bound on the size
of arrays that could be handled by such programs.

'In the GE-645, variable arrays can be assigned to separate
segments so that each can vary in size from one up to 218
words without any special provision being made by
the computer users.

A GE-645 program consists of a variety of segments,
each of which has a unique name. These names are
converted to a segment number of Multics at execution
time. The user may view each of his segments as if
it were stored in an independent core memory. Each
segment has its own origin which can be addressed as
location zero. The size of each segment may vary without
affecting the addressing in other segments.

The words contained within a segment are addressed
by an IS-bit segment address. If a program consists
of several segments, the GE-645 refers to any word

©@~[pill'IT~rn[l,~~!®®® ____________ _
20

in any segment according to a segment number and a
segment address. Figure 9 represents schematically the
G E-645 memory topology. The individual segments of
a program are shown as consisting of independent variable

. ~

'" ~ ...
"0
"0 «
c:
Q)

E
Cl
Q)

(J)

ent Segm
Ori gin --.

0 1 2

Segment Number

3

size storage arrays. In analogy to a rectangular coordinate
system, it suggests that the location of any word may
be specified by two coordinates: a segment number
and a segment address .

4 5 6 7

•

Figure 9. Two-Coordinate Addressing in the GE-645

DESCRIPTOR SEGMENT

A descriptor segment is the processor's means of relating
program references to absolute memory locations. Multics
provides a descriptor segment for each program. The
descriptor segment contains one word called a segment
descriptor word (SDW) for each segment being used
by the program. Each SDW in the descriptor segment
indicates the absolute location of the origin, and gives
size and control information about the segment to which
it corresponds (See Figure 10).

The segment number used in locating a segment refers
to the location of SDW in the descriptor segment.
This SDW contains the segment origin. When a reference
is made using a two-coordinate address, the processor
retrieves the segment origin from the descriptor segment
and adds the segment address to it. The result is the
absolute address of the desired word. This is illustrated
in Figure 10 and in numerous examples which follow.
The segment address is compared to the segment size
to verify that the reference is within the specified allow­
able address range of the segment.

!

©@~lPillu~rn[]J~~t®®® ____________ _
21

Segment No.O
0

BO

0

Segment
Number

Segment No. 1

0

B1

Segment No.2

Segment
Address

Two·coordinate Address

Segment No.3

AO

A1

A2

A3

o
1

2

Descriptor
Segment

BO

B1

B2

B3

A
B
C

Co 0

C1 Segment

C2
Descriptor

2 Words

C3 3

Segment Origin
Segment Size
Control Information

Figure 10. The Descriptor Segment Facilitates Two-Coordinate Addressing

Since the descriptor segment can be up to 218 words
long, the two<oordinate addressing of the GE-645 allows
a program to reference up to 218 segments.

BASE REGISTERS

The location of the descriptor segment for the process
in execution is always known to the processor. Its
origin and size are stored in a special high-speed register
called the descriptor base register (DBR). (See Figure 11.)
When control of the processor is switched from one
user to another, the DBR is reloaded to point to the
descriptor segment belonging to the new user. In this
way all of the relative addressing information for all
of the segments accessible to the program in execution
are changed by simply changing the contents of one
register.

The DBR, like the descriptor segment, is accessible only
to Multics. This means it cannot be manipulated in order

to gain unauthorized access to segments of another
program. Also, storage belonging to another program
cannot be accidentally damaged.

A user may utilize segments in various ways depending
upon his objectives. A simple way of using segments
is to place instructions in one class of segments called
procedure segments, and variable information in another
class of segments called data segments. The GE-645
provides convenient methods for performing necessary
references between such segments.

There are eight address base registers (ABR's) in each
processor. They may be used to specify the segment
number portion of a two<oordinate address as in Figure
12. If bit 29 of an instruction is set to 1, this signals the
processor to interpret the three high-order bits of the
address field as an address base register number. The ABR
will contain the segment number to be addressed, and
bits three through seventeen of the instruction (y in the
figure) will contain the segment address.

©@~[PilllJ'~OO[l,[~~!®OOOO ____________ _
22

Descriptor Base Register (DBR)

Program No. 1
Descriptor Segment

Segment 0

Segment 1

Segment n

...... _----- -- -----------

Program No.2
Descriptor Segment " " \

_.-r -rJ
Segment 0 _ - 1-1 -----II

r - - -,., ... ---tl
/," I 1

L __ ...J// I I
~e~e~ 1-r ,L----...J-1.

I \
I "

Segment nJ
I r - - I

I I I I
L __ .J I I

I I
I I
L __ .J

\
I

Figure 11. The DBR Determines which Segments the Processor May Access

The procedure base register (PBR) contains the segment
number of the segment from which the processor is to
retrieve instructions. The PBR functions exactly like an
ABR except the PBR is never referenced explicitly in a
user program. The processor automatically refers to the
PBR in the execution of every instruction. The instruc­
tion counter (Ie) contains the segment address and the
PBR contains the segment number of the two-coordinate
address of the next instruction. See Figure 13.

The PBR is automatically changed to contain the segment
number of the target segment when a transfer between
segments is performed. Figure 14 illustrates this process.
In this case ABR2 contains the segment number which is
placed in the PBR as part of the intersegment transfer
operation.

INDIRECT TO PAIR MODIFIERS.

An additional method of addressing between segments is
provided in tlj.e GE-645. This is the indirect to pair (IP)
address modifier. The IP modifier has two variations:
indirect to segment modification (ITS), and indirect to
base modification (ITB).

If an instruction refers indirectly (IR or RI) to a word
located in an even addressed location in core memory and
if the indirect word contains the bit configuration cor­
responding to the ITS modifier in its modifier field (bits
30-35), then the following occurs (See Figure 15).

1. Bits 0 through 17 of the indirect word are interpreted
as a segment number.

©@~[Pmu~rn[L~~t®®® ____________ _
23

Data
Segment

Procedure
Segment

,~--~
'/ I, _--

'I
'I

'/
,'/
,I
,I

/'

Instruction

\\

Descriptor
Segment

\\
\\
\\

\

Figure 12. An ABR is Used in Specifying a Two-Coordinate Address to Refer to Another Segment

2. Bits 0 through 17 of the word following the indirect
word are interpreted as a segment address.

3. Bits 30 through 35 of the word following the indirect
word are interpreted as a modifier to be applied to the
segment address. Figure 15 illustrates the use of an ITS
pair in performing a reference between segments.

ITB modification is similar to ITS modification in its use
of indirect words. However, the interpretation of the even­
odd pair is as follows (See Figure 16):

1. Bits 0 through 2 of the indirect word are interpreted as
an ABR number.

2. The ABR contains a segment number to be used in
relative addressing.

3. Bits 0 through 17 of the word following the indirect
word are interpreted as a segment address.

4. Bits 30 through 35 of the odd word following the
indirect word are interpreted as a modifier to be ap­
plied to the segment address.

BASE PAIRS.

Address Base Registers (ABR's) may be used in pairs to
provide a local origin within a segment. This is useful in
various applications as an additional level of index-type

@@~[?[jJ'U'~rn[]J~~J®®® ____________ _
24

Procedure
Segment

Figure 13.

Target
Segment

/
Present Segme~

r--'
I
I

J ~

DBR

Descriptor
Segment

/

;I'

/
/

~---..... ~-

/1 ,

"',..1 I' ,
I.-- __ J ,

............ ,

PBR

Figure 14. A Transfer Instruction Causes the Procedure Base Register to Be Changed

PBR

ABR2

©®~[pffi'[]'orn[L[~~!®®® ____________ _
25

Segment y I
Address

Data
Segment

..... ---.....

-- - -
----.,.

- - - - --

Procedure
Segment

---.,. ----

Segment
Number

k
k + 1

-- -- -t--~--~ - ---- -- "'" --- -- ", -- -- ","",

,: -, -- , Indirect (",'" -- - -- --
_ k OP Modifier .
~--------------~----~3~O~----~3~5

Instruction

Figure 15. An ITS Pair is Used to Refer to Another Segment

modification. It is particularly useful in the maintenance
of pushdown-popup stacks.

Figure 17 illustrates the use of a base pair. The base number
specified in bits 0 through 2 of the instruction point to a
base register which is designated as "internal" in its control
field. The contents of this base register will be added to the
address of the instruction providing a displacement from the
segment origin. Three additional bits in the control field
of the internal base register designate a second ABR con­
taining the segment number of the target segment. This
second ABR is designated "external" in its control field.

SHARED SEGMENTS:

Two or more programs may make common use of certain
segments. For example, several users may share common
data bases and pure procedures, such as compilers and

utility routines. With the demonstration of appropriate
authorization, Multics allows a user to access a common
segment by placing a corresponding segment descriptor
word (SDW) in his descriptor segment. Figure 18 shows the
descriptor segments of three programs sharing a segment
named XYZ. After Multics has entered the SDW's in the
three descriptor segments, the three programs all refer to
the common segment.

Figure 19 illustrates one use of shared segments. Here a
single pure procedure operates on a separate data segment
for every program in a uniprocessor system. Figure 20
illustrates the use of the same pure procedure segment by
two processors in a dual processor configuration. In this
case both processors could be simultaneously executing
the same instructions on behalf of two different programs.
And in general, any number of processors could be
making simultaneous use of a pure procedure.

©@~][Pillu~rn~~~I®®® ____________ _
26

DBR

Descriptor
Segment

Procedure
Segment

{
Segment
Number

--- - - -I~---...... -t k + 1

----- ----- --- ----- -- / ./

.. _--____________ c< __ l ____ ~~_,n_d_ir_ec_t __ l~ ~./ k OP Modifier/ '"

Figure 16. An ITB Pair is Used to Refer to Another Segment

PAGING

GE-645 users consider their programs to consist of named
segments without regard for their absolute locations in
core memory. In fact, only a small portion of most seg­
ments must be in core memory at one time. Instead, al­
most all of a segment can be stored in a relatively inexpen­
sive secondary storage devices in locations known to
Multics. Only the relatively active portions of each segment
must reside in core memory.

The GE-645 processor considers core memory to consist
of blocks of 64 or 1024 words. Each block begins in an
absolute address, which is 0 modulo 64 or 0 modulo 1024.

A segment Similarly consists of blocks of 64 or 1024 words
called pages. Any pages of a segment may now be placed
in any available core Il'lemory blocks of appropriate size.
The GE-645 relative addressing capability allows such
pages to be addressed as if they are physically contiguous
even though they are in widely scattered absolute locations.
The above ideas are shown in Figure 21. Note: Pages in
core memory still exist in secondary storage.

27

SEGMENT DESCRIPTOR WORD CONTROL FIELD

In describing segmentation, the origin and size fields of the
SDW have been discussed. In describing paging, the con­
trol field of the SDW will be discussed. Two bits of the
control field describe whether or not the corresponding
segment is paged and if so whether the pages are 64 or
1024 words long.

If a segment is nonpaged, the complete segment is located
in contiguous core memory addresses. In the usual case, a
segment is paged. All of its pages are the same size, either
64 or 1024 words. The address field of its SDW specifies
the origin of a page table, and not the segment origin as
previously described.

Each word in a page table indicates the absolute location
of the block in core memory to which the corresponding
page is assigned; the first word locates the first page of the
segment, the second word locates the second page, etc.
The individual entries in the page table are called Page
Table Words (PTW's). The PTW's contain a control field
as well as a page origin. (See Figure 22.)

Data
Segment

~

Procedure
Segment

i'
~

OP

Instruction

Descriptor
Segment

DBR

Figure 17. Operation of a Base Pair

SEGMENT ADDRESS PARTITIONING.

When paging is used, each segment address is partitioned
into two parts by the processor before it is used for ad­
dress selection: a page number and a word number.

The processor partitions the segment address so that
each entire page can be addressed by the word number
field. This requires the word number to be 10 bits long
for 1024-word pages and 6 bits long for 64-word pages.
Figures 23 and 24 show segment address partitioning
for two sizes of pages. Eight bits are used for page num­
ber; thus a segment can be divided into a maximum of
256 pages.

PRODUCING THE ABSOLUTE ADDRESS.

With this understanding of segmentation and paging, the
actions of the processor in selecting an address from a
page can be traced. See Figure 25. First, the segment

28

number is determined and used to obtain a segment
descriptor word (SDW) from the descriptor segment as
described under segmentation. The SDW is now examined
and found to refer to a paged segment. The segment ad­
dress is partitioned into a page number and word number.
The page number is added to the page table origin obtained
from the SDW to locate the page table word (pTW).
Finally, the word number is added to the page origin
obtained from the PTW to produce the absolute memory
address of the desired word.

PAGED DESCRIPTOR SEGMENT.

As previously mentioned most segments are paged. In
fact, descriptor segments too can be paged. A two-bit con­
trol field in the descriptor base register specifies paging
and page size in the same way as do the corresponding
bits of the SDW's. If paging is specified, the descriptor
segment has a page table which is used exactly as any
other segment page table. See Figure 26.

Descriptor Segment
of Program No.1

J-----t .. ~ SDW for XYZ

Descriptor Segment
of Program No. n XYZ

Descriptor Segment
of Program No.2

SDW for
XYZ

SDW for XYZ

Figure 18. Several Descriptor Segments May Refer to a Common Segment

ASSOCIATIVE MEMORY

The procedure just described involves several memory
accesses to obtain the final operand. This sequence must
be done once to locate the page, but only once. When
the page's origin is determined, it is automatically saved
in the processor's associative memory, along with the
segment and page numbers. When a later access to the
same segment number and page number is made, the
absolute page origin is provided immediately from the
associative memory. Hence, repeated accesses to the de­
scriptor segment page table, descriptor segment, and page
tables are unnecessary. Through incorporation of the
associative memory, the powers of segmentation and
paging are made available to GE-645 users while high
processor performance is maintained.

The associative memory consists of 16 high speed con­
tent addressable registers. Each register has a usage counter.
The contents of the register with the greatest elapsed
time since last usage are replaced when new information
is added to the associative memory. A subsequent reference

to such a page requires that the absolute page origin be
obtained once again from the SDW and PTW in core
memory.

FAULTS AND INTERRUPTS

The system must respond promptly when an event has
occurred which needs servicing or when a hardware inal­
function is detected. Faults are conditions detected within
a processor, while interrupt cells are set in the System
Controller which in turn notifies its control processor.
There are 32 faults in each processor. The 32 interrupt
cells in a system controller can be set by a CIOC, extended
memory module, system clock or a processor. Faults
have priority over interrupts and all interrupts and low
priority faults can be inhibited by setting bit 28 in the
instruction word for instructions in master mode pro­
cedures.

Fast response to faults and interrupts is obtained by
having a unique pair of locations set aside for each fault
and interrupt condition. The locations associated with

©®~[p[jJIJ~rnOJ~~!®®® ____________ _

29

Descriptor
Segment 1

Data 1

DBR

Descriptor
Seg t 2 men

I

I
I

iJ.

,
'ill Data 2

,
I ,
I
I

I

...
"-

Descriptor
Segment n

\

l
I

M

1/
Data n

I ,

/ I
/ I

/ ./
/ ,.

/ ",.,
,/-' Procedure

Segment ,/ --~ ./ ----
~----... -------

Figure 19. Common Pure Procedure Alternately Serves n Programs in a Uniprocessor Configuration

faults are called the fault vector and the locations associated
with interrupts are called the interrupt vector. The base
address for the fault vector is one of the basic parameters
of the GE-645 system configuration established from the
system configuration console. The interrupt vectors for
each system controller are located immediately after the
fault vector in memory.

The processor response is the same for a fault or an
interrupt: the processor stops what it is doing and
executes the pair of instructions in the location as­
sociated with that specific fault or interrupt. Multics has
stored a pair of instructions here which save the pro­
cessor's status and transfer to a routine that saves the
processor's registers and services the fault or interrupt.
At some point the interrupted routine will have the

30

registers and processor status restored and then continue
as though it had not been interrupted.

Many of the processor fault conditions are deliberately or
inadvertently caused by program and do not involve
any hardware malfunction. Other faults are definitely
caused by some hardware malfunction. In either case, a
Multics routine is available to service the fault. All of the
processor faults are listed with a short description in order
of priority.

START UP - Caused by the POWER ON button being
depressed; works in conjunction with a previous
shutdown fault.

EXECUTE - Caused by EXECUTE button being de­
pressed.

DBR in Processor 1

Descriptor DBR in Processor 2

Segment for Program A I I ~

) (
Data for Program A

/'" -- .- Descriptor
Segment for Program B

-
Data for Program B

,---

Pure
Procedure

Figure 20. Common Pure Procedure Used Concurrently by Two Processors in Dual Configuration

TROUBLE - Caused by problems with Execute Double
(XED) or Store Control Unit (SCU) instructions.

OPERATION NOT COMPLETE - Caused by excess
delay in the processor, usually because of com­
munication problems with system controller.

DIVIDE CHECK - Caused by a division instruction with
a divisor equal to zero.

OVERFLOW - Caused by the generation of a number
with a magnitude too large (or too small) for the
registers. This fault can be inhibited by an overflow
mask bit in the Indicator Register.

PARITY - Caused by parity error being detected
during the reading of a word from memory. This
fault can be inhibited by a parity mask bit in the
Indicator Register.

ILLEGAL STORE COMMAND - Caused by the pro­
cessor issuing a Connect (CIOC) instruction to a
system controller port which is masked.

LOCKUP - Caused when interrupts are inhibited for
more than one to two milliseconds.

ILLEGAL PROCEDURE - Caused when the program
attempts to violate its access rights. This includes
execution of GE-645 privileged instructions in slave
mode, slave program access of address base registers
reversed for use by Multics, undefined operation
codes, address outside segment bounds, and access
type not permitted by access control bits.

GE-635 COMPATIBILITY - Caused when 635 LBAR
or SBAR instructions are executed.

GE-635/645 COMPATIBILITY - Caused when a slave
program attempts to execute a privilege instruction
that exists in both GE-645 and GE-635.

MASTER MODE ENTRY 1

MASTER MODE ENTRY 2

MASTER MODE ENTRY 3

©@~[pillu~rn[L~~!®®® ____________ _
31

Page 9

Page 1

Convential
Core Memory

~------I

Another
Segment

9

Paged
Core Memory

5

2 8

3 4

6

7

Secondary Storage

Figure 21. Frequently-Used Pages Occupy Any Available Blocks of Core Memory

Available for
Other Segments

@®~[pffilJ~rn[]J~~!®®® ____________ _
32

SOW

DBR

Descriptor
Segment

.....,.-__ --J,I' Paged

~--L_-L.'-;"'"

C

Page No. 0

Page No.1

Page No. n

A = Page Origin
C = Control Information

Figure 22. Page Table Words Specify Absolute Core Memory Origins

MASTER MODE ENTRY 4

DERAIL

These 5 faults are each caused by the corresponding
program instructions and are used for slave entry into
master mode programs.

FAULT TAG 1

FAULT TAG 2

FAULT TAG 3

These faults occur when the associated fault tag
tally designator is encountered in an Indirect Then
Tally (IT) address modifier field.

33

ILLEGAL DESCRIPTOR - Caused by improper com­
bination of control bits in either a segment descriptor
word or page table word.

DIRECTED FAULT 0

DIRECTED FAULT 1

DIRECTED FAULT 2

DIRECTED FAULT 3

DIRECTED FAULT 4

DIRECTED FAULT 5

DIRECTED FAULT 6

Page I Word

J
Number Number

\ / \ \ / I
\ \ / I
\ \ I \ 0 7 \ /8 17[" I Segment Address

Figure 23. Partitioning of Segment Address for l024-Word Pages

Page
Number I

I

Word
Number I

\
\
\
\

\ /
\ /

\ /

I
I
I

o 3\ 4 11\,,/12 17 I

I Segment Address

Figure 24. Partitioning of Segment Address for 64-Word Pages

DIRECTED FAULT 7

These faults occur when the appropriate control bit
configuration is used in a segment descriptor word or
a page table word. These faults are used to let
Multics know when a program tries to access a
segment or page that is missing from core, or that
requires service metering, or special access control.

CONNECT - Occurs when the processor receives a
connect signal from another processor through a
system controller.

TIMER RUNOUT - Occurs when the contents of the
Timer Register reach zero.

SHUTDOWN - Occurs about one millisecond before
power fails.

PRl\1LEGED OPERATION

As mentioned earlier in this chapter, the processor has
three modes of operation: absolute, master, and slave. All
instructions are available in absolute and master modes.
Most, but not all, of the instructions are available in
slave mode. General users are restricted to the slave mode

and hence are prevented from executing any instructions
that will damage other programs or Multics. Privileged in­
structions such as those which operate upon the descriptor
base register, load the alarm clock, and initiate input/output
devices are available only in the absolute and master modes.

Whenever a fault or interrupt occurs, the absolute mode is
entered. This causes no trouble since faults place the
processor in control of Multics which, like the hardware,
can be assumed to be debugged. Instructions in the absolute
mode can be inhibited from being interrupted. Only in the
absolute mode may the absolute addresses of core memory
be referenced by their true values. The relative addressing
features associated with segmentation and paging can be
activated optionally in the absolute mode for referring to
operands.

Whenever a processing unit is not in absolute mode, it will
be in master or slave mode and use relative addressing in
fetching instructions and operands. The mode is deter­
mined by the control fields of the SDW and the PTW of the
procedure segment page from which the processor is fetch­
ing instructions. When the control field designates the seg­
ment to be a master procedure, the processor is in master
mode. As such it is eligible to exercise all the absolute
mode privileges except that of referring to absolute

©@~[PilllJ~OO[U~~J®®® ____ ---------
34

Segment
Number

Descriptor
Segment

DBR

I
SDW

Page Table

I---+----I!f
'Page of Segment

t-------t ~l -.1-_____ 5

Page Number

a a a
Segment Address (Octal)

Figure 25. Selection of a Word From a Paged Segment

memory addresses. In addition to their other properties,
master mode procedure segments, when entered from a
slave mode instruction, may be entered only at segment
address zero. This provides a method for Multics to verify
the validity of such entries and prevent misuse of a master
mode segment to the detriment of the system and its
users.

If the segment is deSignated to be a slave procedure,
interrupt inhibition indicated in individual instructions is
ignored and attempted execution of any privileged instruc­
tion results in a fault.

ACCESS CONTROL

In addition to the modes of the processor which determine
certain privileges, access to segments can be further con­
trolled. The foregoing has introduced the notion that
segments can be classified as master or slave procedures;
they can also be classified as data or "execute-only"
procedures. These classifications are made as the third and
fourth variations of the segment type portion of the SDW
control field. If a segment is' classified as data, it cannot
be accessed for instructions. If a segment is classified as an
execute-only procedure, it can be accessed only for

instructions. A slave procedure can enter an execute-only
segment only at segment address zero. This is the same
restriction as for entering master mode segments. In all
other ways, execute-only segments are executed in the same
way as slave procedures.

Access to all types of segments may be further qualified by
the use of two additional and independent bits in the con­
trol field of the SDW. These are the write permit and
master access bits. They may be used to prevent modifica­
tion of a segment and to permit access to a segment only
by master procedures. Either or both of these qualifications
may be applied to any type of segment.

All pure procedures, regardless of their mode, should be
consistent with their defmition and use, and have write
permission disallowed. In this way, attetitpted improper use
by one user cannot diminish the usefulness to others.

Similarly, many users might find the general availability
of certain data, e.g. tables of physical constants, to be
valuable for their common use. However, if a single user
stored an incorrect value in a table, its potential usefulness
to all would be destroyed. Such eventualities can be
eliminated by proper use of the . write-permit bit and

@@~[PfA\IJ'~[3[l'[~~t®®® ____________ _

35

Paged
64-Word Pages

Descriptor Segment
Page Table

Segment Number

+

Descriptor Segment
Page

Paged
1024-Word Pages

+

Page Table

(PTW)
t---,." ".--1

Page

Segment Address

Figure 26. Selection of a Word from a Paged Segment Using a Paged Descriptor Segment

the declarations available through Multics which control
setting of the write-permit bit.

Can privileged instructions be executed?

Does bit 28 of an instruction inhibit an interrupt?

Type of Address for instruction fetch

Type of Address for operand fetch

Access to other segments and pages is controlled?

The features of the three processor modes of operation
are summarized in the following chart.

MODES

Absolute Master Slave

Yes Yes No

Yes Yes No

Absolute Relative Relative

Absolute Relative Relative
or Relative

No Yes Yes

©@~[pillu~rn[L[~~t®®® ____________ _
36

7. GENERALIZED INPUT/OUTPUT CONTROLLER

The generalized input/output controller (GIOC) interfaces
peripherals and communication lines with the memory of
the 645 system, and is capable of operating a large number
of devices of almost arbitrary variety and speed. The GIOC
is controlled by information stored in memory, with access
to the memory being shared with the other active modules
in the system. Data transfers between I/O devices and mem­
ory are accomplished by the GIOC while the processors con­
tinue to run programs. I/O transactions are controlled by
lists of control words prepared by Multics and stored in
memory. When an I/O transaction has been completed, or
when special conditions are detected, the GIOC informs
Multics by causing a program interrupt.

The GIOC consists of two, three, or four cabinets, depend­
ing on the number of modular units, called adapters, that are
required by the specific configuration of peripherals and re­
mote terminals.

The functional division of the GIOC is illustrated in Figure
27. The modular functional building blocks are the various
types of channels, the adapters, and the GIOC controller.

CHANNELS

The functional entities that the Multics I/O system deals
with in a GIOC are called channels. There are four types of
channels:

• Data channels - control the transfer of data.

• List channels - obtain new control words for associated
data channels.

Channel Number

0, 1,2,3

4-7

Channel Type

Status channel

• Connect channels - distribute instructions to list and
data channels.

• Status channels - report occurrence of status events in
connect, list, and data channels.

There are two classes of data channels - indirect and direct.
All list channels, connect channels, and status channels are
indirect.

Each channel is controlled by a control word. The control
word for an indirect channel resides in core memory. Thus
a data transaction, or "data service", requires additional
memory accesses to obtain the control word. A direct chan­
nel avoids the additional accesses by handling the control
word in the channel hardware.

Each channel has a mailbox, consisting of a pair of 36-bit
words in core memory. The mailbox for an indirect channel
contains the active control word for the channel, while the
mailbox for a direct channel is used for making the updated
control word from the direct channel available to Multics at
the conclusion of an I/O transaction.

The mailboxes are located in a block of memory starting at
an address called the "GIOC base address." This address is
one of the basic parameters of the GE-645 system con­
figuration established from the system configuration con­
sole. A pair of 36-bit words from this block is assigned to
each channel in channel-number order. The channel num­
ber also determines the type of channel and the interpreta­
tion of the control word as shown by the following table:

Control Word

Status control word (SCW)

Reserved

8,9,10 Connect channel Instruction pointer word (IPW)

11 - 15

Even from 16 to 4094 List channel

Odd from 17 to 4095 Data channel

DATA CHANNELS

Data transfers between the memory modules and a periph­
eral subsystem or communication line are controlled by a
data channel. Each peripheral subsystem or communication
line connects to a separate data channel, which provides the
necessary data buffering and interface hardware. Because of

Reserved

List pointer word (LPW)

Data control word (DCW)

the diverse requirements for interfaces and buffering there
are a number of different types of data channels, each type
being for use with a different type of adapter. Data chan­
nels are intended for two-way nonsirnultaneous communi­
cation. Two data channels must be used for applications re­
quiring two-way simultaneous communication.

©@~[pillu~rn[L~~J®®® ____________ _
37

Memory
j

,
GIOC

1 Control !
j

Status Connect
Channels Channels

i GIOC i
Priority

t

-
: I }1 }-1

OJ

List I List List
Chan Chan Chan

I
Adapter I

: I Data I I Data I Data }-Chan 1- Chan I Chan
I f ,. ,.

+ + • I/O Devices

-_.

: I List· r.r
Chan

I
Adapter I

: I Data L
Chan 1 ! •
+

I/O Devices

--

: I }1 }1 List I List
Chan Chan

I
Adapter I

I

: I Data I I Data I
Chan r Chan I~

I • + I/O Devices

Figure 27. GIOC Functional Organization

38

The control word for a data channel is called a data control
word (DCW), and has the format shown below.

3 12 15 24 12

T Status
DCW y Channel Control Address Tally

p Pointers
e

Five types of DCWs are available for use with indirect data
channels, and three of these can also be used with direct
channels.

The microcode DCW defines the starting address and
tally (number of characters or words) in a block of mem­
ory for input or output data, and can be used with any
data channel.

The control character DCW defines the starting address
and tally in a block of memory for input data, with pro­
vision for detection of a specific character of class of
characters, and can be used only with indirect data
channels.

The transfer DCW defines the starting address and tally
(number of DCWs) in a block of memory containing ad­
ditional DCWs, and can be used with any data channel.

3 12 15 24 12

T Status Control Address Tally
LPW y Channel

p Pointers
e

The LPW defines the starting address and number of DCWs
(tally) in a list bf DCWs which are to be used by the asso­
ciated data channel. The DCW is placed in the mailbox of
the associated data channel by the GIOC unless the data
channel is direct. For direct channels the GIOC retains the
DCW in the data channel hardware.

The channel numbers of a list channel and its associated
data channel are always an even-odd pair of channel num­
bers.

6 12 18

CIW Not Channel Instructions
Used Number

The control word for a connect channel, called an instruc­
tion pointer word (lPW) is generated and placed in the con-

6

6

Char.
Size
and
Pos'n

The instruction DCW specifies an instruction to be is­
sued to the data channel at a preplanned point in the
data transfer sequence. Some form of instruction DCW
is available for all data channels.

The literal DCW defines a specific pattern of output data
which is to be transmitted repetitively for a specified
number of times (tally), and can be used only with in­
direct data channels.

LIST CHANNELS

Each data channel has an associated list channel which is
responsible for obtaining new DCWs for the data channel
when the previous DCW has been used up. The control
word for a list channel, called a list pointer word (LPW), is
generated and placed in the list channel mailbox by Mul~
tics. The format of the LPW is shown below.

Not
Used

CONNECT CHANNELS

Each of the three connect channels is responsible for the
distribution of channel instruction words (CIW) to data
channels and list channels. CIWs are used to initiate or
change the operation of data channels, and have the for­
mat shown below.

nect channel mailbox by Multics. The format of the IPS is
shown below.

6 3 21 24 12 6

IPW Not I
Used

Not I Address
Used

L Status Channel Pointer

Tally

39

Not
Used

The IPW defines the starting address and number of CIWs
(tally) in the list of CIWs that is to be distributed. The
operation of a connect channel is initiated when a Connect
instruction (CIOC) is executed by a processor and the

30 3

COW Not Used

Connect Channel Pointer -------'

operand word from the CIOC instruction is sent to the
GIOC. The connect operand word (COW) has the foramt
shown below.

3

Memory Port of GIOC ___________ ..J

STATUS CHANNELS,

Each of the four status channels is responsible for reporting
the occurrence of significant status events in the 1/0 sub-

6 12 12 12

Status Event Channel Channel Not
Type Number Status Used

The control word for a status channel, called a status con­
trol word (SCW), is generated and placed in the even word

18 12

SCW Address
(18 low-order bits) Tally

Address

(6-order bits)

The SCW defines the starting address and the number of
words in a block of memory where the GIOC is to place
status words after the block currently in use has been
filled. When a block has been filled by the GIOC, it obtains
the definition of the next block by moving the even word
of the mailbox into the odd word. The even word is then
set to zero so that Multics is informed that another new
block must be defined before the remaining block has been
filled.

Each of the status channels corresponds to a particular
interrupt cell in the system controller which contains the
GIOC base address, and the appropriate interrupt cell is
turned on every time that a status event is reported, so
that one of the processors will be interrupted and made
aware of the status event in the GIOC.

SUMMARY

The arrangement of mailboxes and the way that control
words from the mailboxes define areas of memory for use
by the GIOC is shown in Figure 28.

12

system to Multics. When a status event occurs, the appro­
priate status channel forms two 36-bit words of status
having the format shown below.

12 6

LPW DCW Not
Tally Tally Used

40

of the status channel mailbox by Multics and has the
format shown below.

6

T

ADAPTERS

Adapters are modular units which can -be chosen to fit the
requirements of the peripheral and remote terminal equip­
ment. Each adapter includes one or more data channels and
the associated list channels. Each data channel provides an
interface suitable for connection to a particular type of
input/output device.

Since there are a number of different interfaces required
by various types of input/output devices there are a num­
ber of different types of GIOC adapters. Each type of
adapter provides for the handling of one or more devices of
a particular type. The following adapters are available.

• High performance peripheral adapter (HPC600)

• Direct disc adapter (DDA600)

• Custom direct adapter (CDACiiOO)

• Indirect peripheral adapter (IP A600)

• Teletypewriter adapter (TT A600)

GIOC
Base

Address

Mailboxes

SCW (0)

SCW 1
sew 2
SCW 3

IPW (8)
IPW (9
IPW (10)

LPW (16)

DCW (17) -----
LPW (18)
DCW (19)

I

I
I
I
I
I
I

Status

Status .
I
I

CIW
I

I
I

DCW

DCW
DCW

i
i

DCW

Data
Data

I
I

Data

Space for status words
to be placed in memory
by status channel.

CIWs to be distributed
to list and data channels
by comect channel.

DCWs to be obtained
one-at-a-time by list
channel for use by
data channel

Data to be transmitted by
data channel, or space
to be filled with received
data by data channel.

Figure 28

• Character asynchronous adapter (CAA600)

• Character synchronous adapter (CSA600)

• Dialing adapter (DGA600)

HIGH PERFORMANCE PERIPHERAL ADAPTER
(HPC600)

The high performance peripheral adapter provides one di­
rect data channel for connection to a high speed peripheral
subsystem such as a magnetic tape controller, magnetic
drum controller, or mass storage subsystem. Two high per­
formance peripheral adapters are required for connection
to a dual magnetic tape controller. Data transfer to or from
memory usually involves 72 bits at a time.

DIRECT DISC ADAPTER (DDA600)

The direct disc adapter provides two direct data channels
for connection to a disc storage controller. Each data trans­
fer to or from memory involves 36 bits. r

CUSTOM DIRECT ADAPTER (CDA600)

The custom direct adapter provides one direct data channel
for connection to special high speed interfaces requiring
transfer rates of up to 250,000 36-bit words per second.
Data transfer to or from memory usually involves 72 bits
at a time.

INDIRECT PERIPHERAL ADAPTER (IPA600)

The indirect peripheral adapter provides up to six indirect
data channels for· connection to low speed peripheral sub­
systems such as a card reader, card punch, line printer, or
perforated tape subsystem. Each data transfer to or from
memory involves six bits.

TELETYPEWRITER ADAPTER (TTA600)

The teletypewriter adapter provides up to 32 indirect data
channels (in groups of eight) for connection to Bell System
103 series data sets. Plug selection provides for any of the
standard bit rates between 45 and 200 bits per second, and
for 5-, 6-, 7-, or 8-level codes. All channels within one
adapter operate at the same bit rate and code level. Each
data transfer to or from memory involves six or nine bits.

©@~~ill'iJ'~rn[]J~~t®®® ____________ _
41

CHARACTER ASYNCHRONOUS ADAPTER (CAA600)

The character asynchronous adapter provides up to three
indirect data channels for connection to Bell System 202
series data sets. Plug selection provides for any of the
standard bit rates between 150 and 2400 bits per second
and for 5-, 6-, 7-, 8-level codes. All channels within one
adapter operate at the same bit rate and code level. Each
data transfer to or from memory involves six or nine bits.

CHARACTER SYNCHRONOUS ADAPTER (CSA600)

The character synchronous adapter provides up to three
indirect data channels for connection to Bell System 201
series data sets. The bit rate (up to 2400 bits per second)
of each channel is dependent on timing signals from the .
attached data set and is, therefore, independent on each
channel. Plug selection for each channel provides for 5-,
6-, 7-, or 8-level codes and for definition of the synchro­
nization character. Each data transfer to or from memory
involves six or nine bits.

DIALING ADAPTER (DGA600)

The dialing adapter provides up to eight indirect data
channels for connection to Bell System 801 series auto­
matic call units so that the 645 system can originate calls
to remote terminals on dial telephone facilities. Each data
transfer from memory involves six or nine bits, and provides
one digit for dialing.

GIOC CONTROLLER (DC8031)

All work done by the GIOC is partitioned into units of
service so that a single service can be completed with no
more than five accesses to memory. Services are performed
one-at-a-time, except that a direct data channel can tem­
porarily preempt service from an indirect channel.

Each request for service has a specific priority associated
with it. Each adapter uses one or more levels of GIOC
hardware priority, and assigns specific types of service re­
quests to each of the levels which it uses. All data and list
channels within an adapter may share the same priorities.
Logic within the adapter ensures that only one channel
at a time is serviced.

The three connect channels are each assigned a separate
priority so that instructions can be issued at any of the
three priority levels. Similarly, the four status channels are
each assigned a separate priority. Each status channel
also has a priority for program interrupt i.e., the interrupt
cell it sets in the system controller, that is completely in­
dependent of its GIOC hardware priority.

STATUS EVENTS

The status channels are responsible for reporting the
occurrence of significant status events in the 1/0 subsystem
so that appropriate action can be taken by Multics. Five
classes of status events are detected by the GIOC:

• Internal signal

• Exhaust

• Terminate

• External Signal

• Emergency

Internal signal status indicates the detection of a special
control event, as defined by the control field in a DCW or
LPW.

Exhaust status indicates that the block of memory defmed
by a DCW, LPW, or IPW has been used up.

Terminate status indicates that control of data transfer
operations in a data channel has been returned from the
GIOC to Multics.

External signal status indicates the detection of significant
status events, other than termination, in the device that is
connected to a data channel.

Emergency status indicates the detection of either a hard­
ware malfunction or a software error in setting up control
words for the GIoe. All emergency status events are re­
ported through status channel zero.

The control words for data channels, list channels, and
connect channels include status channel pointer fields
which allow Multics to designate the status channel to be
used for reporting terminate, exhaust, external signal, and
internal signal status events. In choosing a particular status
channel Multics effectively chooses a particular interrupt
cell that is to be set when the status event is reported. Re­
porting of any class of status event can be prevented by
placing a zero in the appropriate status channel pointer
field.

Thus, under program control, the same class of status event
occurring on two different data channels can be assigned to
two different levels of GIOC hardware priority and cor­
respondingly different levels of program interrupt priority.
This allows optimization of the real-time effect of any
event upon any other queued events.

OPERATION

Before the operation of a data channel in the GIOC can be
initiated Multics performs the following operations:

• A list of one or more DCWs that will control the data
channel is generated.

• An LPW, defining the location and length of the list of
DCWs, is generated and placed in the mailbox for the
associated list channel.

• A CIW that will initiate the operation of the list channel
is generated and included in a list of CIWs intended for
other list channels.

• A IPW, defining the location and length of the list of
CIWs, is generated and placed in the mailbox for one of
the three connect channels.

©@~[pillu~rn[L[~~j®OOOO ____________ _
42

After this has been accomplished Multics executes a
Connect instruction (GIOC) which initiates the operation
of the connect channel in the GIOC. The connect channel
distributes the CIWs, thereby initiating the operation of the
list channels.

The list channel obtains the first DCW from the list, and
presumably this DCW is an instruction DCW which initiates
data transfer. This also causes the list channel to obtain the

43

next DeW, defining the block of memory to be used for
the data transfer.

The data transfer proceeds under the control of the GIOC.
When the I/O operation has been completed, or when the
GIOC detects a status event which may require the atten­
tion of Multics, one of the status channels is used to store
status in memory and to set an interrupt cell in one of the
system controllers, so that one of the processors will be
interrupted and made aware of the status event.

8. EXTENDED MEMORY MODULE

The Extended Memory Unit (EMU302) is used as an ex­
tension of core memory. Segments and pages of programs
flow between memory and the EMU under the control of
Multics. Information used frequently remains in core
memory, while information needed less often remains in
the extended memory unit where it can be obtained quickly
when needed.

ORGANIZATION

The extended memory module consists of two units: a
controller and a rotating storage unit. The controller ob­
tains control words from memory, interprets them, and
reads or writes the desired information from or onto the
rotating unit. The storage unit is actually a fixed head
magnetic disc unit.

Data is organized in sectors of 80 words, 64 of which are
data words and 16 are in the guard band. Words in the
guard band are used to store parity for the 64 data words
and for testing storage unit operation without disturbing
the data words. (This testing feature is discussed later in
this chapter.) A track set of 16 read/write heads simul­
taneously reads or writes a sector.

The extended memory module has a storage capacity of 4
million words. The storage unit is organized into 4096
tracks (read/write heads), and therefore, 256 track sets,
with 256 sectors in each track set.

PERFORMANCE CHARACTERISTICS

The average transfer rate between the extended memory
unit and core memory is 470,000 words per second. Data
is always transferred as pairs of words, that is, 72 bits
per memory access, with four words transferred every
6.7 microseconds. At this rate, 32k words are transferred
in 70 milliseconds allowing for guard bands. The storage
unit rotates at 1725 rpm which gives an average latency of
17.4 milliseconds. Since there is a guard band at the end of
each sector, there is a small amount of time between the
end of one sector and the beginning of the next sector.
Figure 29 represents conceptually a small portion of the
storage unit's surface. Each rectangle represents an 80-word
sector, which includes a guard band.

Assume that sector A is being written. After writing the
last of the data information, new parity is recorded in the
guard band, but the other guard band information is not
changed. The extended memory controller can obtain a
new control word from memory, interpret that word,
select a different set of read/write heads, and change from
the writing to the reading mode before the beginning of
sector B comes under its set of read/write heads. Thus it
is possible to eliminate the latency by building the list of
control words in the proper order. Sectors can be identified

by their angular position and by the track set used in
reading and writing. In figure 29, A and C start at the
same angular position, and Band D start in the next
angular position. C and D are read or written by the same
track set.

OPERATION

The EMU differs from the GIOC in that, under normal
circumstances, it never terminates its operation and hence
does not have to be repeatedly connected. A list of data
control words (DeW's) is continually updated by the
operating system. Each DeW specifies a command, a core­
storage address, an EMU address, and the location of the
next DCW. The EMU address may be either one 64-word
sector or sixteen consecutive sectors with a total of 1024
words. These storage areas correspond to the page sizes
used by a processor.

The extended memory portion of Multics receives requests
from other parts of Multics, determines what angular
sectors are involved, makes up the DeW's and inserts the
DCW's in a list. The DCW specifies a storage area by
track set, angular position, and number of sectors. The
latency is minimized by the order in which the DCW's
are placed in the list.

Instead of the order corresponding to the order in which
the requests are received by the operating system, it is
determined by the angular position of the storage areas.
Thus, when the storage unit reaches a new angular position,
the next DCW is for a sector at that position.

At times, the storage unit is ready to service the list of
DCW's before requests have been received for sectors in
every angular position. In this situation, the operating
system uses a DCW which specifies that no data transfer is
to take place. This allows the storage unit to maintain con­
tinuous operation by eliminating a disconnect and then a
connect.

A current status word (CSW) is stored in memory as the
storage unit begins "executing" a DCW. If an error of any
kind is detected by the extended memory module, an
abnormal status word (ASW) is stored in core memory.
The contents of the ASW identify the error. In addition to
storing an ASW, the controller initiates a program interrupt
by setting an interrupt cell in a system controller module.

Abnormal status words are' stored in a queue of 32 words.
When the end of the queue is reached, the extended memory
controller automatically starts over at the beginning of the
queue's storage area. Hardware is provided in the con­
troller so that Multics can indicate which ASW's it has
serviced and, hence, which ASW locations the controller
may use for storing new ASW's. If the controller reaches

©@~[Jlillu~rn[!J~~J®®® ______________ _
45

Track Set

AngUlar}
Position
Sector Rotation

Figure 29. Successive Sector Capability

a point where it would store an ASW on top of another
ASW that Multics has not yet used, it disconnects and
signals this event by a program interrupt.

The extended memory controller also can store an ASW
and cause an interrupt even though no error is detected.
This is done with specific DCW commands, such as "read
and interrupt". Thus, when that Dew is used, the operating
system knows where the extended memory module is in
the list of DeW's. This may be used to warn the operating
system that the controller is near the end of the DeW list
and that more DeWs will be needed soon.

When a program interrupt is needed, the extended mem­
ory controller indicates the relative seriousness of the
interrupt by setting one of three possible interrupt cells.
The actual cells used are determined by a patchborad in

the extended memory controller. One interrupt cell is used
to indicate that the selected DeW has been used. A second
interrupt cell is used when a data error is detected. The
third interrupt cell is used if control problems are detected.
In all three cases, the accompanying ASW contains bits
which further defme the reason for the interrupt.

TEST MODES

Special test modes enable extensive test and diagnostic
programs to be run without disturbing the user's data.
There is a special test sector of eight 36-bit words within
the guard band of each sector. When testing, data can be
transferred between the test sector and core memory.
Every addressable sector recorded on the storage unit can
be accessed, and associated logic and recording electronics
can be checked without altering or disturbing u~r data.

©@~[PlA\'[J'~m[u~~!@®® ____________ _

46

9. SYSTEM CONFIGURATION CONSOLE

The System Configuration Console (SCC600) is a central
console from which the major modules of the GE-645
System can be reconfigured and the start-up process can
be initiated. The following features are included.

• Static card reader to input system configuration infor­
mation.

• A Card Number Verification (CNY) channel to permit
software verification of a particular configuration.

• Major Module status display.

• Configuration data display.

• System Initialization and Bootload controls.

• Console MASTER/SLAVE Select.

• Connections for Operators Teletypewriter Station (OTS).

• Space for common carrier voice communication set.

• System Emergency Power Off Button.

In a large system it is possible to use 1 SCC's with one
designated master and one slave.

The console is designed for normal operator use from a
seated position, but is arranged for efficient operation
from a standing position. The console is 44 inches high,
32 inches deep and 80 inches wide. (Figure 30)

RECONFIGURA TION

The System Configuration console connects to all major
modules in the system. Provisions are made to connect 8
system controllers, 4 GIOC's, 4 processors and 2 ex­
tended memory modules. This is more than a maximum
configuration since the number of active modules (proces­
sors, GIOC's and EMM's) can not exceed 8 in any system.

Each major module contains a number of switches that
must be set properly to specify a particular consistant
system configuration. There is a maximum of 473 switches
in a system composed of 8 system controllers, 4 GIOC's,
3 processors and 1 EMM. The setting of these switches can
be very time consuming and very error prone. To speed
up the reconfiguration of a system the setting of all these
switches are punched into a single 80 column data card.
A static card reader on the SCC is used to read the card

o 5 6 13 14

and the switch settings are transmitted to latching relays in
each of the affected modules. Each module has a LOCAL/
REMOTE switch which must be placed in the REMOTE
position to use or store data in the latching relays. When the
switch is in the LOCAL position the local switches are used.

A card number verification (CNY) channel is provided to
allow the software to determine the number of the last
reconfiguration card used (this is stored in the console in
latching relays) and the card presently in the card reader.
These numbers are 9-bit identification numbers assigned to
each card. To initiate a reconfiguration the following steps
are necessary.

1. Turn the reconfiguration key switch to the ENABLE
position.

2. Check that the OPERATE indicator is illuminated.
This indicates the console is ready, not in a test mode.

3. Insert the reconfiguration data card in the card reader
and engage the handle.

4. The card number of this card and the last reconfigura­
tion card are displayed as two 3-digit octal numbers.

5. Set the mode to MASTER or SLA VB.

6. The card data can be examined using the configuration
display on the console.

7. Press the ENABLE button. This button has a plastic
hood to prevent accidental activation.

8. Press the LOAD button. This button also has a plastic
hood. The reconfiguration data on the card is now
transferred to the latching relays in each module. The
duration of this cycle is 2.5 seconds.

RECONFIGURATION DATA

The data necessary to reconfigure a system can be divided
into 3 categories.

Active Module Data (Processor, GIOC, EMM)

1. Base Address is the starting absolute address of a control
region for each active module. The eight S bits of the
24 bits shown below are specified by the SCC; all
others are zero.

23

o 0 0 0 0 0 Iss S S S S S S o 0 0 0 0 0 0 0 0 0

47

Figure 30. System Configuration Console

2. Port Enable/Disable Control permits any of the eight
memory ports to be disabled in a particular active
module.

o 5 6 8 9

3. Port Block Number is a 3-bit number to specify the three
S bits above the X bits shown below, necessary to address
all the words in a system controller. All bits above the S
bits must be zero.

23

o 0 0 0 0 0 S S S XXXXXXXXXXXXXXX 32K memory

o 4 5 7 23

o 0 000 S S S XXXXXXXXXXXXXXXX 64Kmemory

o 3 4 6 7 23

000 0 S S S XXXXXXXXXXXXXXXXX 128Kmemory

This allows multiple system controllers to be connected
to each active module. The active module decides
which port to use for a particular address. Each active
module requires a port block number for each port
connected to a system controller.

4. Interlace control consists of 2 bits for each pair of
active module ports connected to system controllers
(Le., A & B, C & D, etc.) so that the type of interlacing

o 5 6 17 18

can be coded (none, 2 phase, or 4 phase). These 2 bits
replace a 3 position switch at the active module .

GIOC BOOTLOAD BASE ADDRESS

In addition to the other active module reconfiguration
data sent to the GIOC, the Bootload Base Address must
be supplied for each GIOC. The Bootload Base Address
(12 bits) is used during a system start-up to load a fixed
program from a GIOC into memory.

23

o 0 0 0 0 0 S S S S S S S S S S S S o 000 0 0

©@[£JlPmu~rn~~~J®®® ____________ _
48

SYSTEM CONTROLLER DATA

1. Port Mask Controls consist of 2 types of data. One bit
is used to enable/disable the port mask register in a
system controller for all ports. One bit per port is used
as an ON/OFF control. This makes a total of 9 control
bits. The order of control priority on each port is ON -
mask - OFF. That is ON overrides the mask, but the
mask register overrides an OFF condition. The mask
register is program setable. In the local mode there is a
3-position switch for each port.

2. Control Processor Port Selection designates one of 8 ports
which is notified when an interrupt cell is set in the
system controller. A rotary switch is used in the local
mode.

MASTER/SLAVE RECONFIGURATION

The SCC has the capability of defining a master and slave
mode. This is not related to the master/slave mode of the
processor. During a master reconfiguration any module's
configuration can be changed and the input data card
designates each module as belonging to either a master or
slave subsystem. This data is stored in latching relays in the
SCC. When the console performs a reconfiguration in the
slave mode only those modules not designated master in
the last master reconfiguration can be altered.

The mode of the console is changed by 2 push buttons on
the console. In a two-console system the console that is
first designated master locks the other into the slave mode.

SYSTEM STATUS DISPLAY

The system status display gives the operator an immediate
indication of the configuration status of each module in
the system.

A tri-color indicator is provided for each of the possible
eighteen major modules (maximum of 16 at one time) that
can be connected to an SCC. The display element for a
nonexistant module is not illuminated and appears blank
with a dark background. The tri-color indicator display is
ON-LINE (green), OFF-LINE (yellow) and LOCAL (red).

ON-LINE/OFF-LINE indication is supplied by the master/
slave subsystem assignment established during the last
master mode reconfiguration. The QN-LINE indicator is
lit for a module having the same subsystem designation as
the SCC mode (Le., master subsystem modules are ON­
LINE to a master SCC and OFF-LINE to a slave SCC).

The LOCAL indicator is illuminated when the SCC does not
have control of a particular module's configuration.

Four PROCESSOR ACTIVE indicators indicate the status
of the system processing activity. The indicator is green
for each processor actively executing instructions other
than the DIS (Delay until Interrupt Signal) instruction.

OPERATOR TELETYPEWRITER STATION

An Operator Teletypewriter Station (OTS) is provided as
part of the SCC. Circuits are provided so the teletypewriter
can be connected directly to 2 G10C teletypewriter chan­
nels through a switch. These channels should be in different
GIOC's (if available) to improve reliability. The switching
circuits also allow the teletypewriter to be connected to .
two data sets for connection to the GIOC's in the normal
manner. The actual teletypewriter is not included with the
system configuration console.

SYSTEM INITIALIZATION AND BOOTLOAD

System Initialization and/or Bootload can be started at
either the system configuration console or any G10C. In
either case the actual system action starts in a particular
G10C.

When initiated at the SCC a set of interlocking push­
buttons are used to select one of two channels (A or B)
and one of four G10C's. The GIOC selected must be under
control of that SCC (Le., master or slave subsystem).

SYSTEM INITIALIZATION

A hooded SYSTEM INITIALIZATION pushbutton is
located on the SCC control panel and is used for remote
activation of the system initialization circuitry in the se­
lected G10C.

The activated GIOC sends an initialization signal to all
system controllers on enabled ports. Each system con­
troller initializes itself and sends an initialization signal out
on all non-masked ports to the active modules. All active
modules reset their control logic to an initial state. The
initial state in each module terminates any action in process,
clears all requests for action, resets all external devices and
places itself in an inactive, but ready condition.

SYSTEM BOOTLOAD

A hooded SYSTEM BOOTLOAD pushbutton is located
on the SCC control panel and is used. for remote activa­
tion of the system boatload circuitry in the selected G10C.

In selecting the GIOC, Channel A or B must be selected to
correspond to the input channel connected to the peripheral
device that contains the program to be loaded.

The selected G10C activates the previously described sys­
tem initialization process. The bootload program is sorted
in diodes in the GIOC and consists of 64 words. The boot­
load program is loaded into core storage from the diodes
addresses relative to the bootload and GIOC base addresses,
after which the GIOC sets an interrupt cell in the system
controller containing the G10C base address. The boatload
program is executed by the control processor for that sys­
tem controller. The program sets up control words and
initiates input on the selected channel (A or B). When the
input terminates the boatload program checks status and
transfers to the program just loaded.

©@[DJ[?ffili'~rn[L~~t®®® ____________ _
49

10. PERIPHERAL AND TERMINAL EQUIPMENT

The ex ternal input/output equipment that can be connected
to the GIOC through one or more of its channels has been
broken into two broad categories: peripherals and terminal
equipment.

Peripheral equipment includes the equipment local to the
computer center that has a direct connection to the G lOCo
Terminal equipment is the equipment that is generally re­
mote from the computer center and is connected to the
GIOC with communication lines using a data set.

PERIPHERAL EQUIPMENT

The peripheral equipment with a GE-645 system includes
all the standard types used with a large computer system.

DISC STORAGE UNIT (DSUlOF)

DISC STORAGE CONTOLLER (DSCIIF)

DISC ELECTRONICS UNIT (DEU11F)

Card reader , card punch, line printer, paper tape reader
and paper tape punch are available for paper input/output
media. Magnetic storage devices include tape, disc, drum
and cards. A switch unit is available standard for switching
between multiple I/O devices and/or different G 10C's

Since .the GIOC is designed on a modular basis, adapters
to interface with a specific custom device can be designed
as the need arises.

A description of some of the standard peripheral devices
for the GE-645 system are included on the following
pages.

@@[£J[PWlJ~W~~~J®®® ____________ _
51

CONFIGURATION

DATA FORMAT

SPEEDS

CAPACITY Block

Inner Track (21 Blocks)

Outer Track (43 Blocks)

Position (4 Inner Tracks +
4 Outer Tracks)

Disc (64 Positions)

Unit (32 Disc)

Subsystem (8 Units)

CHECKING

A subsystem consists of a controller, a disc electronics unit and from,
one to eight disc storage units. Each storage unit has 32 discs.

Each disc has a positioner with 8 heads. The disc has 2 recording
surfaces and 2 zones with 2 active tracks each. The positioner has
64 positions for a total of 5 12 tracks per disc. The inner zone tracks
are divided into 21 data blocks and the outer zone tracks have 43
data blocks each. A block stores 192 characters (6 bits). A single
disc can store 3,145,728 characters.

Data Transfer rates per channel (average)

165, 120 characters/sec. - outer zone
80,640 characters/sec. - inner zone
122,880 characters/sec. - track pair average.

File latency time (one revolution)

52 milliseconds

Access (seek) time

95 milliseconds - minimum (adjacent track)
174 milliseconds - average
248 milliseconds - maximum.

6 Bit
Characters

192

4,032

8,256

49,152

3,145,728

100,663,296

805,306,368

Block Parity

Invalid Compare

Transfer timing

Record field overflow

Busy controller or unit

Write lockout

Invalid Address

Invalid position or sector

Internal error

Illegal operation code

Unit off-line

36 Bit
Words

32

672

1,376

8,192

524,288

16,777,216

134,217,728

@®~[?fA\1YDOO[L[~~!®OOOO ____________ _

52

FEATURES

INTERFACE

DISC STORAGE UNIT (DSU204)

DISC STORAGE CONTROLLER (DSC200)

12 ADDITIONAL DISCS (OPT203)

CONFIGURATION

DATA FORMAT

SPEEDS

The Controller has 2 simultaneous channels. Each channel has 2
non-simultaneous inputs. Two simultaneous positioner seeks can
occur in each disc unit, with only one actual data transfer per chan­
nel at a time.

The Disc Storage Controller (DSC 11 F) is a dual channel controller
and uses a Direct Disc Adapter (DDA600) , which is also dual chan­
nel, to interface with a GIOC. Two GIOCs can connect to one
DSCIIF.

A subsystem consists of a controller and from one to four disc
storage units. Each storage unit has up to 16 discs in groups of
4 discs.

Each disc has 2 recording surfaces with 2 zones of 128 tracks each.
The inner zone tracks are divided into 8 blocks and the outer zone
tracks into 16 blocks each. A block stores 240 characters (6 bits +
parity). A disc can store 1,474,560 characters.

Data transfer rates (average)

41,700 Characters/second inner zone;
83 ,400 Characters/second outer zone;

File latency time (one revolution) 52 milliseconds. Access time :
225 ms average;

357 ms , maximum;

block on adjacent track 150 ms, maximum.

©@[0J[pffiu~rn[L~~!l ®®® ____________ _

53

CAPACITY Block

Inner Track (8 Blocks)

Outer Track (16 Blocks)

Disc (256 Inner Tracks +
256 Outer Tracks)

Unit (16 Disc)

Subsystem (4 Units)

CHECKING

INTERFACE

6 Bit
Characters

240

1,920

3,840

1,474,560

23,592,960

94,371,840

Transfer timing

Invalid control character

Check character

Buffer section committed

Invalid device code

Transmission parity

Internal error

Sector compare failure

Invalid operation code

Illegal buffer address

36 Bit
Words

40

320

640

245,760

3,932,160

15,728,640

The Disc Storage Controller (DSC200) is a single channel device and
uses a High Performance Peripheral Adapter (HPC600) to interface
with the GIOC.

©®~[?lA11Y~rn[U~~JOOOOOO ____________ _
54

MAGNETIC DRUM STORAGE UNIT (MDU200)

MAGNETIC DRUM CONTROLLER (MDC201)

ADDITIONAL DRUM STORAGE UNIT (ADS201)

CONFIGURA TION

DATA FORMAT

SPEEDS

CAPACITY Block

Band (32 Blocks)

Drum (384 Bands)

Subsystem (2 Drums)

CHECKING

A subsystem consists of a controller and one or two magnetic drum
storage units.

Each drum has 284 data bands with 2 tracks each. A data band has
32 data blocks of 384 characters (6 bits). A drum can store
4,718,592 characters.

Data transfer rates (maximum) 360,000 characters per second.

Drum latency (one revolution) 34 milliseconds.

6 Bit
Characters

384

12,288

4,718,592

9,437,184

Invalid device codes

Invalid operation codes

Transmission parity

36 Bit
Words

64

2,048

786,432

1,572,864

©@~[pffiu~rn[U~~t ®®® ____________ _
55

INTERFACE

MASS STORAGE UNIT (MSU388)

MASS STORAGE CONTROLLER (MSC388)

CONFIGURATION

DATA MEDIUM

DATA FORMAT

Record check character

Transfer timing

Block count

Writing voltage

Power failure

Cooling failure

Invalid drum address

Proper drum r.otation

The Magnetic Drum Controller (MDC201) is a single channel device
and uses a High Performance Peripheral Adapter (HPC600) to inter­
face with the GIOC .

A subsystem consists of a controller and from one to four mass
storage units. A storage unit has 8 removable magazines of 256 mag­
netic cards.

Data is recorded on one side of 16" by 4W' flexible magnetic cards.

Information is recorded serially on 128 tracks extending the length
of each card. Tracks are paired into 64 bands each divided into 4
longitudinal blocks.

©@[£J[pillu~rn[U~~! ®®® ____________ _

56

SPEEDS

OPERATIONAL MODES

CHECKING

CAPACITY Block

Card (256 Blocks)

Magazine (256 Cards)

Unit (8 Magazines)

Subsystem (4 Units)

FEATURES

INTERFACE

A block stores 648 characters, (6 bits pl10lS parity).

A card has 165,888 characters (256 blocks).

Maximum transfer rate is 80,000 characters per second.

Maximum drum latency (one revolution) 60 milliseconds.

Access time without preselect is 460 milliseconds (average).

Access time with preselect is 185 milliseconds (average).

On line reading or writing.

Automatic read after write parity check.

Full address verification before card entry onto the drum.

Parity check during reads, including correction of every single bit
error.

6 Bit 36 Bit
Characters Words

648 108

165,888 27,648

42,467,328 7,077,888

339,738,624 56,623,104

1,358,954,496 226,492,416

Each magazine has approximately the same storage capacity as 2
reels of 2400 feet, 800 bpi, 7 track, magnetic tape.

Simultaneous select and preselect operations on all units, therefore
four simultaneous select operations on subsystems with four units.

A storage unit can read or write up to 256 blocks on one card by a
single instruction.

The Mass Storage Controller (MSC388) is a single channel device
and uses a High Performance Peripheral Adapter (HPC600) to inter­
face with the GIOC.

57

MAGNETIC TAPE SUBSYSTEM

A magnetic tape subsystem consists of one controller and one or more tape units. A GE-645 system may have more than
one magnetic tape system.

DATE MEDIUM

DATA FORMATS

CHECKING

FEATURES

INTERFACE

Half-inch-wide, magnetic-oxide plastic tape, up to 2400 feet long,
7- or 9-track (compatible with American Standard Association codes).

Binary (standard) and special decimal.

Transfer timing

Blank tape read

Transmission parity

Lateral parity

Missing character

Longitudinal parity

Bit detected during erase

Tape handlers are available in either 7 or 9 tracks, and operate
with controller MTC404 and MTC400.

Each channel of the magnetic tape controller requires a High Per­
formance Peripheral Adapter (HPC600) to interface with a GIOC .

©@[0J[pillu~rnu,~~t ®®® ____________ _

58

CONTROLLER CHARACTERISTICS

Controller No. of I/O Maximum Number
Type No. Channels of Tape Handlers

per Subsystem

MTC 404 2 16

MTC 400 1 8

Normally, the MTC 404 controller will have each of its two channels connected to a different GIOC.

CARD READER AND CONTROL (CRZ201)

DATA MEDIUM

DATA FORMATS

SPEED

CHECKING

80- or 51-column cards with upper left or right corners cut round
or square. Score-edge cards can be read.

Alphanumeric and column binary card code.

900 cards per minute (80 columns)
1200 cards per minute (51 columns).

Card feed alert

Card synchronization

Read head alert

Card jam

Character validity (decimal mode)

©@[DJ[Pmu~w[L~@! ®®® ____________ _
59

TAPE HANDLER CHARACTERISTICS-

Data Transfer Rates for Various
Densities (in thousands of

characters er second)
Tape Speed Recording

8-bit characters 6-bit characters (ins. per sec.) Densities
Tape Handler No. of Available

Type No. Tracks Forwd. Rewnd. (bits per in.) 200 556 800 200 556 800

MTH412 9 150 300 200,556,800 30 83 120 40 111 160

MTH411 9 150 300 200,556 30 83 40 111

MTH405 9 75 225 200,556,800 15 42 60 20 56 80

MTH404 9 75 225 200,556 15 42 20 56

MTH311 7 150 300 200,556,800 30 83 120

MTH211 7 150 300 200,556 30 83

MTH301 7 75 225 200,556,800 15 42 60

MTH201 7 75 225 200,556 15 42

FEATURES

INTERFACE

CARD PUNCH AND CONTROL (CPZ201)

DATA MEDIUM

DATA FORMATS

SPEED

CHECKING

Hopper empty

Stacker full

200G-card hopper and stacker capacity.

Two output stackers, selected by the program.

Dual read heads: data read at two independent stations and
compared.

Last batch control via LAST BATCH switch.

1000-card auxiliary stacker.

Continued operation while loading or removing cards.

Read alphanumeric and binary cards intermixed.

An Indirect Peripheral Channel (IPC600) is used to interface the
CRZ201 with the GIOC .

Standard 80-column with round or square corners.

Alphanumeric, edited alphanumeric and column-binary card code.

300 cards per minute.

Card feed

Card synchronization

©@G::J[pwu~ rn ~~illt®®® ____________ _
61

FEATURES

INTERFACE

Parity

Card jam

Hopper empty

Stacker full

Chad box not properly inserted

Chad box full

Read-after-punch

Auxiliary stacker full

1200-card stacker and 1200-card hopper capacities.

An auxiliary stacker of IOO-card capacity. Cards are automatically
directed to the auxiliary stacker when punch errors are detected.

Continued operation while loading or removing cards.

Ex tensive error monitoring for high-accuracy data transfers.

Automatic delay turpoff and halt.

An I ndirect Peripheral Channel (IPC600) is used to in terface the
CPZ20 I with the GIOe.

ASCII EXTENDED CHARACTER SET PRINTER (PRT202)

@@[£J[Pmu~ rnQJ~~t ®®® ____________ _
62

DATA MEDIUM

DATA FORMATS

SPEEDS

OPERATIONAL MODES

CHECKING

FEATURES

INTERFACE

Continuous forms, 3 to 19 inches wide, up to 22 inches long,
1 to 5 copies (original and 4 carbons).

Standard ASCII printing character set.

Vertical spacing is 6 lines per irich or 8 lines per inch and up to
136 characters per line.

600 1 pm, printing all 94 ASCII printable characters, 1200 1 pm,
printing a subset of 34 characters.

Edit mode allows column skipping and special slewing by count­
down or VFU loop.

Nonedit mode suppresses special editing functions.

Parity on input data

Parity on VFU tape

Low paper

Out of paper

Invalid operation code

Channel busy

Buffer overflow

Photoelectric sensing of the VFU tape for reliability.

Switches for communication between operator and control program
to position magnetically recorded input media.

Separate VFU mechanism for each mode of vertical line density .

. Programmed control of slewing by VFU tape or countdown, in­
cludes top-of-page slew.

An Indirect Peripheral Channel (IPC600) is used to interface the
PRT202 printer with the GIOC.

©@~lPill'O'~rn[)J~~!®OOOO ____________ _
63

PERFORATED TAPE SUBSYSTEM (PTS200)

DATA MEDIUM

SPEED

OPERATIONAL MODES

CHECKING

FEATURES

Paper or Mylar polyester film laminate tape perforated with chad­
type holes.

Reads and punches 5-, 6-, 7-, and 8-channel tapes, 10 characters
per inch, in widths of 11/16, 7/8, and 1 inch. Recognizes all possible
code combinations.

Reader, 500 characters per second; punch, 150 characters per
second.

On-line: punching fully controlled by the GIOC (reading controlled
by the GIOC and the plugboard in the perforated tape subsystem).

Off-line: reading and punching controlled by the PTS200 Tape
Reader/Punch control panel.

Output spool full

Tape breakage

Optional odd or even parity while reading

Odd parity check on all characters punched

Removable plugboard expands flexibility by providing ability to
control input data format, check odd or even parity, delete specified
characters, stop operation or indicate end of file upon detection of
specified characters, and perform various logical functions.

©@~[P!i\u~rn~~~!®®® ____________ _
64

INTERFACE

PERIPHERAL SWITCH CONSOLE (PSC200)

Extensive error monitoring for high-accuracy data transfers.

Photoelectric reading mechanism for accurate, reliable reading with­
out tape wear.

Perforated Tape Reader (PTR200) and Perforated Tape Punch
(PTP200) which make up the PTS200 can be installed separately.

An Indirect Peripheral Channel (IPC600) is used to interface the
PTS200 with the GIOC.

This peripheral switch console can switch peripherals and GIOC channels. This permits easy and rapid configuration of
systems and permits convenient equipment substitution for maintenance purposes. The subsystem consists of a console which
contains operator switches and from 1 to 16 switch units. Each unit can be used to connect a single peripheral subsystem to
either of two GIOC's of either of two subsystems to one GIOC. Units are switched by the operator. Buttons on the control
and indicator panel of the console control the switch units. A peripheral switch can be inserted in any peripheral line that
connects to a High Performance Peripheral Adapter (HPC600) or an Indirect Peripheral Channel (IPC600) in the GIOC.

TERMINAL EQUIPMENT

Since the GE-645 System is designed to provide an information processing service capability, many of the users are remote
from the actual computer center. To provide service at these remote locations the GIOC has adapters that interface with
several types of data sets used for data transmission over common carrier communication lines (e.g., telephone or telegraph
lines). Then by adapting a particular remote terminal to a compatible data set, data can be transferred between the remote
device and the GE-645 System.

The Bell System Data Sets that can be connected to the GIOC and the associated adapter(s) used are shown in the following
table.

65

Bell System
Data Set Type of Service GIOC Adapters

103A, E Switched Narrow Band TT A600,CAA600

103F Private Narrow Band TT A600, CAA600

20lA Synchronous Voice Band CSA600

202C, D Asynchronous Voice Band CAA600

80lA, C Automatic Call Unit DGA600

Tow General Electric terminal devices that can be used with the GE-645 System are the GE-115 Information Processing
System and the DAT ANET-760* Keyboard/Display Subsystem. These <Ire described in the following pages.

GE-115 INFORMATION PROCESSING SYSTEM

The GE-115 is ideal as a remote input/output terminal connected by communication lines to the GE-645 . It can be taken off
line and will perform as a card processing system. As a remote terminal to a larger computer, it provides direct access to the
larger system without the media conversion often required at peripheral processors.

The GE- 115 communicates with a GE-645 ·using a synchronous voice band data set (such as the Bell System 201 Data Set)
through the DATANET-lO* communication controller. The GE-115 system can be designed to fit the individual customer's
needs. Besides the central processor, the system can include a card reader, card punch, line printer, and other peripheral
equipment

*DAT ANET is a reg. trade mark of the General Electric Company.

©@~[Pffiu~w[U~~! @®® -------------
66

CENTRAL PROCESSOR

Memory Unit - 8.0 microsecond magnetic core

4096,8192,12288 or 16384 characters (or octets) (8 bits + parity)

Parity check on each character

28 primary arithmetic, logical editing and transcoding instructions

CONTROL UNIT

This unit fetches and interprets instructions from memory. It establishes connections with input/output units specified
in the instruction. The control panel permits manual intervention to guide system operation.

Arithmetic Unit - Performs decimal and binary addition and subtraction operations. Decimal operation can be per­
formed on 16 digit decimals and binary operations can be performed on fields up to 16 octets long.

CARD EQUIPMENT

One reader and 2 punches are available.

Card Card Card
Reader Punch Punch

CRZI00 CPZlOl CPZI03

Speed-Max. (Card/minute) 300 60-200 300

Speed-Remote (Card/minute) 125 85 85

Reading (Punching) Method Serial Serial Parallel

Hopper Capacity 500 1500 1200

Stacker Capacity 500 1500 1200

Remote Speed indicates the minimum number of complete cards that can be read or punched while transferring the resulting
data to or from the communication line.

Line Printers - Two line printers are available (PRTlOO and PRTllO).

Speed: 300 (PRTlOO) or 600 (PRTlI0) lines/minute

Speed-Remote: 95 lines/minute

Character positions: 104, 120 or 136

Characters: 64 standard General Electric Set

Spacing: 10 char/inch horizontal; 6 lines/inch vertical

Skipping: 12 (PRTlOO) or 60 (PRTlIO) inches/second

Form Width: 3 to 22 inches

©@G~][pffi'[]'orn[]J~~t®®® ____________ _
67

DATANET-760* KEYBOARD/DISPLAY SUBSYSTEM

The DATANET-760* Keyboard/Display is an alphanumeric display system that provides rapid communication with com­
puters from local or remote locations. It permits convenient entry and display of data or requests, transmission to the
computer, and receipt , storage, and presentation of responses. The DATANET-760 consists of a Display Controller Unit and
one or more TV-type Display Terminal Units. Up to 32 terminals, each of which may be at a remote location , may com­
municate with the GE-645 through the Display Controller Unit. Up to four page printers may be connected to each Display
Controller Unit (in place of Display Terminal Units) to provide simultaneous hard copy of display data from any of the
terminals.

The Display Controller Unit (DCU) consists of a Basic-Controller and up to four Terminal Memory Units, each of which
can serve up to eight Display Terminal Units in simultaneous access . A Data Line Controller and multiple Page Print Con­
trollers may be included on an optional basis.

The Display Terminal Unit (DTU) consists of a standard industrial-quality TV monitor, supporting electronics, and a type­
writer-like keyboard. Each DTU communicates with the GE-645 through the DCU via keyboard entries. Keyboard entries
are converted to binary form and stored in the memory of the DCU. The coded characters in the memory are repetitively
converted to TV video and, along with the synchronizing signals, are returned to the DTU. Selected portions of the stored
information are transmitted on operator command to the computer, either by direct connection or by common carrier
using Bell System 201 or 202 data sets. Only one line is needed for a Display Controller Unit.

The data display may be viewed at additional locations by coupling standard industrial-quality TV monitors to a Display
Terminal Unit (DTU) or to the controller (DCU). The display can be projected for large-screen viewing by use of standard
video projection equipment.

The presentation on the DTU is a fIxed-format alpha-numeric display composed of up to 1196 characters and symbols stored
in memory. The characters are arrayed in textual lines of 46 characters each. The number of lines in the display varies from
4 to 26 depending on the number of DTU's aSSigned to the Terminal Memory Unit in the DCU. The character repertoire
consists of the alphabet , numbers, punctuation marks, and special symbols. Four of the special symbols allow horizontal and
vertical lines to be drawn for added emphasis or generating simple diagrams, charts, or tables. In addition, a flashing code
allows emergency or other important conditions to be emphasized.

*DAT ANET is a reg. trade mark of the General Electric Company.

©@~[Pmu~rn [L~~tl®®® ____________ _
68

--5
To

GE-64
or

Data S et

... ----- ----- ---.
I
I Terminal I I ... Data Line Basic Memory -Controller Controller Units

I (Up To 4) I .. ~
I I
I I

I I
I I

I I
I I

I I Page· Print
Controllers -'

I (Up To 4) •
I l DI",I.y Controll" Unit

---------- __ ...I

Keyboard/Display Subsystem (Datanet-760*)

69

Display
_a. Terminal

Units

(Up To 8 Per TMU;
Up to 32 Total,
Less Number Of

Printers.)

.. To Printers
(1 Per PPC)

11. MULTICS

The multi-user environment of the GE-645 will be con­
trolled by the Multics operating system. The basic objec­
tives governing the development of the operating system
have been described briefly in chapters 2 and 3. In this
chapter the general functional organization of Multics as
it is being implemented, and some of its more detailed
characteristics are explained.

CONCEPTS

Any person or any coding that calls a portion of Multics
code is considered a ''user'' of Multics. Usually a user is
a human user at a remote console. Other ''users'' in the
true Multics sense are the Multics subsystems, modules, and
procedures.

PROCESSES, SEGMENTS, AND FILES

The GE-645 storage hierarchy distinguishes between pri­
mary storage devices used in execution and secondary
storage where data and instructions are kept before and
after execution. In a similar way, Multics distinguishes be­
tween instructions in execution and when held in secondary
storage.

The user may term his input to Multics according to his
own conventions as a program, a job, or a run. However,
once this input, consisting essentially of a sequence of
actions, is in execution, it is known as a process. A process
is defined as that sequence of actions running on and con­
trolling a processor.

Processes are divided into linear arrays - ordered sequences
of elements where each element is a machine word, char­
acter, or bit. These sequences of elements are called ~
ments in primary storage. When held in secondary storage,
segments are termed meso Each me must have a symbolic
name.

Files are stored within the storage hierarchy according to
various factors. In general, however, the particular device
on which any me resides at a particular time is determined
by the relative activity of the me. More active mes are
stored automatically on higher ranking devices than less
active meso

PAGING

For execution, the Multics system may subdivide the seg­
ments of a process. These subdivisions made by Multics

are called hyperpages. Hyperpages consist of one or more
hardware pages; thus each hyperpage is a multiple of 64 or
1024 words, depending upon the page size defined in the
segment descriptor word. Users do not see the paging car­
ried out by Multics; each user sees his program in execution
as if it were the only program being run by the system.

Certain Multics segments must remain in core at all times
for the system to operate properly. They are said to occupy
wired-down core.

DISTRIBUTED OPERATING SYSTEM

In executing a user program, Multics combines the needed
portions of the operating system - selected segments -
with the user program segments in such a manner as to
perform the task requested by the user. Thus a process in
execution is neither a user program nor a collection of
Multics system segments but a combination of both. This
concept is called a distributed operating system, since sys­
tem functions are distributed as needed within the process.
A sophisticated Multics user can substitute his own system
coding for Multics code in much of the system if he wishes.
Further, the programs the user writes for execution be­
come indistinguishable from system coding in Multics.

DYNAMIC LINKING

Since segments are brought into core memory from sec­
ondary storage only when needed in executing a process,
the linkage of each symbolic reference between segments
occurs the first time that the reference is encountered at
execution time. Each segment of a program includes a
linkage section which contains word pairs, called link
pairs, representing the references to external segments
from this segment. Before linking is performed for the
first time, each link pair contains a modifier that causes a
linkage fault (fault tag 2) when the external reference is
initially made.

When a linkage fault occurs, a Multics module called the
linker obtains pointer information from the linkage section
and replaces the fault tag in the link pair with an ITS pair
that points to the referenced location. The act of replacing
the initial fault tag with an ITS pair is called linking. Once
the linkage is initially created, any later external reference
is handled without further calls to the linker.

PROTECTION OF PROCESSES

In any operating system and particularly in time-sharing,
certain operating procedures are called many times by

©®~[pillu~rn[L~~t®®® ____________ _

71

different users. In traditional systems such shared pro­
cedures are usually protected from arbitrary modification
by a user process because they are distinct from user coding
and are executed separately. In Multics, operating _ pro­
cedures execute as part of the user process and are in­
distinguishable from it. Therefore, shared segments of
Multics require a special means of protection against un­
authorized access and modification.

Segments of Multics and of user processes exist and execute
in a number of mutually exclusive subsets called rings.
Conceptually these rings may be viewed as concentric
with the inner containing those segments whose modifica­
tion or destruction would harm all users and each outer
ring containing segments whose importance to all users
becomes less and less as we move outward from the inner­
most ring.

The outermost ring as initially seen by Multics, is that ring
containing segments originated by users, i.e., any modifica­
tion or destruction of segments in this ring affects one and
only one user. However, a user may himself wish to protect
some segments of his process from other segments of the
process. To this end he may add additional rings of pro­
tection for segments of his process.

Within Multics, 3 concentric rings are distinguished. The
innermost, called the hardcore ring or ring 0, is made up of
those procedures common to all users and those procedures
that interface directly with the hardware. Examples are
the process exchange of the supervisor, the GIOC inter­
face module of the I/O system, and procedures of the basic
fIle system.

The next outer ring is called the administrative ring or
ring 1. This ring contains most of the remaining segments
of Multics. Since these procedures do not interface directly
with the hardware they are somewhat less prone to cause
a major system catastrophe if accessed in error.

-The next ring is the user ring or ring containing segments
of user programs and such Multics modules as the shell of
the command system. Beyond this ring the user can add
additional rings for segments of his programs that should
be checked for valid access when calling inner rings.

As a process executes, it makes calls to other segments of
the user code and to segments of the operating system. As
long as the external references are confined to segments
that exist within the same ring as that of the segment
currently executing, no ring protection check is placed upon
accessing the segments. For example, when the segment
management module calls the search module to locate
a fIle, no protection fault is generated since segments of
both modules, the caller and the target, exist within the
same ring. (This does not preclude protection within a
given ring against an attempt to execute a data segment
or access another user's procedure illegally. File system
access control provides intra-ring protection.)

When a running procedure calls to a segment not in the
same protection ring, a protection fault is generated. The
fault interceptor then calls the gatekeeper module. The
gatekeeper coordinates legality checking on the attempted
reference. If satisfied that the called segment will permit

the reference, the called 'segment will begin to execute on
the processor. In effect, the process is now executing in a
different ring.

By analogy when a process calls a segment not in the ring
in which it is currently executing, it rings a bell in the gate
of a wall protecting the called segment. The gatekeeper
answers, checks the credentials of the caller process, and if
the reason for the call is valid, the gatekeeper permits the
process to cross into the other ring. Therefore, the switch­
ing of execution of a process to a different ring is called
wall crossing.

PURE PROCEDURES

The pure procedure contains no changeable data, is not
altered during execution, and can be invoked by any user
to perform its function on his own data.

All Multics Operating System procedures are pure proce­
dures. Procedures can be shared by all Multics users. Other
segments may be written that contain only data; Multics
also accepts user-written segments that are paritally pro­
cedure and partially data.

USER INTERACTION WITH MULTICS

This example discusses the principal steps that take place
at the user at a terminal writes a Plogram, compiles it,
and executes it. The example is presented to help the
reader understand the overall functioning of the major
parts of Multics: (1) the supervisor, (2) the command sys­
tem, (3) the fIle system, and (4) the input/output system.
The use of these will be illustrated, and each will be de­
scribed in the remaining sections of this chapter.

The user begins by dialing the number of the computer
center. The supervisor reacts by logging in the user and
building various segments that are needed by the operating
system.

Now the user is ready to type in his program. To accomplish
this he types in a command that tells the system he wants
to build a me. The command system executes his command
by giving control to an editing routine. He now types his
program. As he types, the fIle system is placing his input in
a me. The decisions of which pages to keep in core memory
for his me are made by the fIle system. Control of the
input/output hardware at the computer center is handled
by the input/output system under the direction of the me
system.

When the user finishes typing his program, he types a com­
mand that directs Multics to compile his program. The com­
mand system gives control to the compiler.

The compiler uses the fIle system to obtain the fIle of
source language statements. The fIle system, and through
it, the input/output system, is use~ to obtain additional
parts of the compiler itself from secondary storage as the
compilation proceeds. The principal output from the com­
pilation is the object program. It will be in a fIle that is
built as the compiler delivers its output to the fIle system.
A message is typed when the compilation is done. The user

@@~[pilllJ~rn[lJ~~t®®® ____________ _

72

then types a command that directs the system to execute
his program. (Assume that this program reads some data
from the user's terminal, performs some calculations, and
types the results on his terminal.) The command system
interprets his execute command and, through the super­
visor, causes his program to become a candidate for execu­
tion. When his program is placed in execution, it asks him
for the input data. At this point, the program does not
actually need a processor and the supervisor will assign the
processor to some other user. While he is typing his data,
the I/O system is taking care of the details of reading the
input data.

When he is finished typing the input data, he indicates this
to the system and an interrupt occurs. The supervisor re­
ceives control, analyzes the interrupt, and gives control to
the input/output system. It verifies that the data was re­
ceived satisfactorily and notifies the supervisor that the
user's data is now available. The supervisor now gives con­
trol back to the program, and the program performs its cal­
culations. The results are now ready to be sent to the user.
His program calls on the input/output system to type the
results.

To terminate his run, the user initiates the logout proce­
dure. The supervisor summarizes resource utilization infor­
mation for accounting purposes and takes the necessary
steps to terminate the user's run. As time passes, and his
program and data fIles are not used, the file system re­
moves his files from memory to make room for active
users. This example has merely touched on some of the
functions performed by the various parts of the operating
system. More information on the supervisor, command sys­
tem, file system, and input/output system is supplied in the
following sections of this chapter.

SUPERVISOR

The Multics supervisor acts in response to any information
in the Multics system that affects the status of a process
and/or processor. A process can exist in several states:
running, ready, or blocked. A running process is one cur­
rently executing on a processor. A ready process is one that
is. not running but is held up awaiting availability of a pro­
cessor. A blocked process is one awaiting an event (not
necessarily imminent) in another process or in the external
world, such as receipt of input from a device. The super­
visor must not only keep track of what process is in what
state and when to switch the state of a process, but it must
also· provide a method of communicating to a process the
occurrence of significant events in other processes.

TRAFFIC CONTROL

Within the supervisor the set of procedures that make up
the traffic controller perform the follOwing major func­
tions:

A) Response to interrupts

B) Response to faults

C) Multiplexing of processors among processes.

73

All interrupts are passed directly to the interrupt inter­
ceptor module (11M) by a transfer instruction in the pro­
cessor interrupt vector. Interrupts are divided into two
categories: system interrupts and process interrupts. System
interrupts occur as a result of the reception of signals from
I/O devices or from the calendar clock. These are signals
from outside the Multics system and from outside the pro­
cessor, directed to some process in the system (generally
not the process running) and usually mean "start doing
something to some process in the system". Process inter­
rupts result from the reception of a signal from a processor
and are directed to the process currently running. Process
interrupts usually mean "change your execution state."

All faults are passed directly from the fault vector to the
fault interceptor module (FIM). The FIM/stores the pro­
cessor state and calls the appropriate procedure to handle
the fault. For example, "missing-page" and/or "missing
segment" faults are handled by the basic fIle system which
causes the segment or page to be read into core. After the
fault is serviced, control is returned to the FIM which re­
stores the machine conditions at the time of the occurrence
of the fault.

Process exchange is the name applied to those procedures
of the traffic controller that handle dispatching of pro­
cessors among processes, scheduling of processes, and
switching of processes. The process exchange is driven en­
tirely by calls from other supervisor procedures, usually as
a result of interrupts.

The basic hardware mechanism by which a processor
switches from one process to another is the load descriptor
segment base register instruction (LDBR). At the instant
the descriptor segment base register (DBR) is reloaded, the
processor sees the "core image" of a new process. However,
the contents of the processor registers temporarily remain
the same.

The process exchange maintains a "ready list" of all pro­
cesses in the ready state in the order in which they are to be
run. The ready list consists conceptually of pairs of en­
tries; a process identification and a running time limit
imposed by the scheduler.

The ready list is ordered and maintained by the scheduler
procedure. In general, scheduler evaluates the process' re­
quest for priority in execution, comparing the request with
present status of the ready list. Scheduler establishes a
time limit from the process and places it in the ready list
at its appropriate point. After a process is put on the ready
list, it is run in turn on a first come-first served basis. How­
ever, if a process is known to have a high priority it can be
given a favorable position on the ready list in accordance
with its priority in relation to the priorities of the other
processes on the list. Scheduler has the option of using a
pre-emption interrupt to force a process to relinquish a
processor to a process with a higher priority. When a pro­
cess has exhausted its allotted time but has not completed
execution, it is placed at the end of the ready list.

Processors are shared (multiplexed) among the processes.
The traffic controller makes the multiplexed system appear
to the user as if his process were the only one executing on

· a processor at any given time. This technique shields the
user from details of hardware management and handles the
multiplexing of system resources among the users in such a
way that the user need not be concerned with the prob­
lems of multiplexing processors. Included protection en­
sures that one user cannot affect another withotitprior
agreement.

Since there are many processes and only a few processors,
not all unblocked processes can be running. This is the rea­
son for the existance of the ready state of a process. In­
trinsic to the ready state in the "ready list" which lists all
processes in the ready state as previously described.

The ready list contains the basic information to direct the
dispatching of a processor when it is released by a process.
A call to wake up a blocked process means "put it on the
ready list". When a processor calls to block it means that
the process is temporarily abandoning the processor upon
which it is executing and that the first process on the ready
list should be given control of the processor.

PROCESS CONTROL

Processes are allowed to be completely removed from core
memory and to be subsequently returned to core without
interfering with their programmed course. Process control
is a general term applied to the means by which a process is
brought into an active condition, loaded, unloaded, and re­
turned to an inactive condition. Process control overlaps
and interfaces closely with other supervisor modules and
with the basic file system. In fact, many of the functions
of process control are actually performed by the basic me
system.

The various conditions of a process (i.e., active, inactive,
etc.) are to be distinguished from the execution states
(running, ready, blocked). The condition of a process is
associated with the process control functions of the super­
visor; the state is associated with the traffic controller
function of the supervisor.

INTERPROCESS COMMUNICATION

To permit parallel processing, each user procedure and
many Multics system modules execute as collections of
separate processes, called process groups. Communication
between processes is the function of interprocess com­
munication.

The sending process places message information in a seg­
ment accessable to both itself and another process (the
target process). The message may be either data, control
information, or procedure. The target process reads the
message information from the common segment. It is pos­
sible for the target process to suspend operation while
awaiting a message. The sending process causes the target
process to resume running when a message is in the
common segment by calling wakeup.

The notion of an event is fundamental to interprocess
communication. An event is anything recognized during
the execution of one process that is of interest to another
process. For example, the completion of the task of

collecting the characters of an input line from a typewriter
is an event which might be recognized by a device manager
process and be of interest to a working process. An event is
a unique occurrence; it happens exactly once. If the device
manager process of the example recognizes several succes­
sive line completions, each completion would be a separate
event. The interprocess message is a signal from one process
to another that an event has occurred.

RESOURCE MANAGEMENT

Since Multics is a system capable of meeting the computing
needs of many varied users, it possesses an extensive re­
source-management facility which includes capabilities for
measuring resource usage, charging for resources expended,
regulating the use of resources, and evaluating the demands
on. the resources available. This function is performed by
the modules that make up the accounting procedures in
Multics; the accounting system is checked periodically by
an auditing procedure. The accounting procedures are flex­
ible in order to meet the needs of different installations.

Some resources of Multics are not easily shared among
users. These resources are more effectively dedicated to a
specific user for a given time period, despite the fact that
the user does not make maximum use of the resource. The
type of resources most often dedicated are detachable stor­
age such as tape handlers and reels. However, resources
which are normally shared may also be dedicated. For in­
stance, a percentage of the capacity of a processor could be
dedicated to a single user.

Dedicated resource management performs two functions:

1) the administrative function of reserving and allocating
resources

2) the security function of protecting resources dedicated
to one user from interference by another user.

Using dedicated resource management, it is possible to re­
serve I/O devices, the media for the devices, or a portion of
a processor for a user and assign these resources at the
specific time the user needs them.

COMMAND SYSTEM

Commands are calls to programs expressed in user-oriented
language. Commands are often issued from the remote
terminals of interactive users, but they may also be issued
by other mes for controlling batch processing applications.

Two essential parts of the command system are the
"listener" and the "shell". The listener.reads and controls
the storage of messages arriving from :r:emote terminals.
The shell translates these console messages into calls for
procedures. As its name implies, the shell is an interface
between the user and the procedure being called.

The listener reads the message into a buffer. When it detects
the end of the message, it calls the shell, using the buffer
contents as arguments. The shell then translates the mes­
sage into a call to a procedure. The shell breaks the

©@~[pill'[j'~rn[L~~il®®® ____________ _

74

character string of the message into substrings according
to the syntax for commands. It assumes the first substring
to be a procedure name and interprets the remaining sub­
strings as arguments (data) for that procedure. The shell
converts the argument string to the form expected by the
procedure named, creates a standard call for that pro­
cedure, and then transfers control to it. This procedure
now has control until its execution is completed. Control
is first returned to the shell, and then to the listener to
receive the next message.

The shell can call any procedure for the user, providing the
syntax of the command language has not been violated,
and the procedure called is in a me which the user has
permission to execute. The shell is itself a system sub­
routine, so that it may be called by any procedure. There­
fore, it may be called recursively through any depth of
nesting. This allows it to be used by any procedure to
perform the standard terminal interface functions.

When a user types a command, he may want to include
parameters which control the way a called program is
executed. For example, a call to a compiler might con­
tain a parameter to specify whether a listing me is to be
created. Options of this type may be set permanently for
a particular user or they may be set only for the duration
of an interactive session.

Although the shell may call any procedure specified by
the user, it is used mostly for calling system commands.
A system command is a procedure available to all users.
It is maintained by system programmers and appears in a
special directory. This allows the user to call the utility
procedures of the Multics system with minimum effort.

FILE SYSTEM

The me system is an integral part of a time-sharing or
multiplexed system. One of the more stringent require­
ments of this environment is an on-line secondary storage
complex in which all mes are referred to symbolically (not
by address) and in which movement of information is
organized by the me system rather than the user.

Within Multics, a me is an ordered sequence of elements
(with an element being a machine word, a character, or a
bit). Files are created, modified, or deleted only through
the me system, and at the level of the me system a me
is formatless. All formatting is performed by Multics, or
user supplied software modules outside of the me system.
A me is known by its me name or names, and each me
name is symbolic. File names can be common to a group
of users, or a user can reference mes through symbolic
names known only to himself.

The Multics me system is divided into two parts:

1) The basic me system which manages mes, moving seg­
ment pages into and out of core memory and to and
from on-line secondary storage.

2) The multilevel and backup me system which moves in­
frequently used mes downward to slower speed devices
and which provides copies of all mes on off-line devices,
for retrieval and protection against destruction, either
from user mishandling or hardware malfunction.

The me system is a memory system which gives the user
and supervisor alike the illusion of maintaining a private
set of segments or mes of information for an indefinite
period of time. This retention is handled by automatic
mechanisms operated by the supervisor, independent of
the complex of secondary storage devices of different
capacity and access. Since mes are referred to symbolically,
the user is never aware of the movement of mes through
this complex.

Users' mes can be completely private or may be accessed
by other selected users. The me system allows mes to be
simultaneously read by automatically interlocking me writ­
ing. An interlock mechanism permits control over the de­
gree of access allowed (e.g., a user may wish a me to be
read but not written).

Files are of two basic types: directory mes and non­
directory meso Directory files have entries that point to
and describe other files, both of the directory type and the
non-directory type. Directory files are used to keep track
of and provide information for referencing the files of the
system. Non-directory mes include all other files; pure pro­
cedure, data, linkage, etc.

FILE STRUCTURE

The structure of files in the file system provides the means
for accessing secondary storage" in a machine-independent
and device-independent fashion. The user is aware only of
symbolic addresses. All physical addressing is performed by
the file system, unseen by the user.

The file structure can be looked at from three separate but
interdependent views:

1) The directory tree, the logical file structure within
Multics.

2) The storage hierarchy, the relative order of the various
storage media accessible to the system.

3) The system skeleton, the basic organization of Multics.

DIRECTORY TREE

The logical organization of files in the Multics file system
is a tree hierarchy. The root of the tree is a special type of
me, maintained by the me system, known as a directory.
A directory contains information which branches to (points
to) other files. The files pointed to by branch entries can
be directories themselves and contain branches to other
mes, which mayor may not be directories.

STORAGE HIERARCHY

In most cases a user need not know how or where a me
is stored. The user sees infmite storage capacity and all

©@[DJ[pill'iJ'~rn[L[g~!®®® ____________ _

75

fIles appear to be stored on-line. In general, only the fIle
system knows which particular storage device holds a fIle,
and it is the responsibility of the fIle system to insure that
a fIle is available for processing when needed.

From a system viewpoint, there is primary storage and
secondary storage for fIles. Primary storage is provided in
the system controller modules, where fIle processing occurs.
Secondary storage consists of the various fIle storage de­
vices at the installation. The devices are ranked according
to their relative speeds of access and transmission. Within
secondary storage, devices are regarded as belonging to one
of two systems: on-line and fIle backup.

The on-line storage system consists of those devices which
are immediately accessible to the fIle system (e.g., extended
memory unit, disc).

The fIle backup storage system consists of those devices
with removable storage media (e.g., magfletic tape reels,
magnetic cards, etc.).

SYSTEM SKELETON

The skeleton of the system, the information which supports
Multics operation, is contained in the root directory of the
tree hierarchy.

All directories reside in the hard core ring. Each of the com­
ponents of the root directory have access restrictions as­
sociated with them which can differ from those for access
to the root directory as an entity. In turn, the fIles pointed
to by the root directory have their own access restrictions.

The root directory is made up of a number of individual
directories. Each of these is a portion of the Multics sys­
tem skeleton and points to fIles (or segments) containing
the information necessary to perform Multics functions.
Access to the root directory as an entity with the intention
of writing is restricted to personnel at the Multics installa­
tion authorized to inspect and adjust accounting, billing,
and personnel information.

BASIC FILE SYSTEM

Th,e basic fIle system is concerned with the management
of segments. It moves pages of segments into and out of
core memory (primary storage) and to and from on-line
secondary storage. It implements the hierarchical organiza­
tion of segments into directories and includes a means for
controlling the way in which a segment can be used. In
conjunction with the multilevel and backup fIle system,
it provides the user with complete independence from
storage and maintenance consideration for fIles.

A user may reference data elements in a fIle explicitly
through read and write statements, or impliCitly by means
of segment addreSSing. Although a fIle may sometimes be
referenced as an input or output device, it can be referenced
only through segment addressing. For example, a tape or
teletypewriter cannot be referenced as a segment, and
therefore cannot be regarded as a fIle by this defmition.

Input and output requests directed to I/O devices other
than fIles (e.g., tapes, teletypewriters, card readers) are

processed directly by a device interface module (DIM)
whiclt is designed to handle I/O requests for a given device.
However, I/O requests which are directed to a fIle are pro­
cessed by a procedure known as the fIle system interface
module. This module acts as a DIM for fIles within the fIle
system. Unlike other DIM's, the procedure does not ex­
plicitly issure I/O requests. Instead, the fIle system interface
module accomplishes its I/O implicitly by means of seg­
ment addressing and by issuing declarative calls to the basic
fIle system.

Whether a user references a fIle through the use of read
and write statements or by means of segment addressing,
ultimately a segment must be made available to his process.
In managing segments, the basic fIle system:

1) Maintains the directories of existing segments (fIles).

2) Makes segments available to a process upon request.

3) Creates, truncates, and deletes segments.

4) Enforces the access control information of user's direc­
tories.

As a result of a user or user process referenCing a fIle or
a data element within a fIle, the data is made available by
the basic fIle system through the following actions.

FILE RETRIEVAL FROM USER'S VANTAGE POINT

When a process refers to a segment for the first time, a
linkage fault occurs. This initiates a search for the named
segment in a per-user system data base, the segment name
table (SNT). If the segment is not found, directories are
searched to locate it and an entry is establiShed for it in the
SNT, and in another data base, the known segment table
(KST). A segment with an entry in the KST is known to the
process but not loaded. At this time, the fIle system deter­
mines the user's right ,to access the given segment. If the
user receives access permission, a number is assigned to the
segment and this information is passed back to the re­
questing process. No part of the segment has been brought
into core, but it is now directly addressable.

Once a segment is known to a process, further reference to
that segment causes a missing segment fault which initiates
the following actions. The unique identifier for that seg­
ment is retrieved from the KST; then an entry is either
found or created for the segment in the active segment
table (AST) a system wide data base. A segment descriptor
word is placed in the descriptor segment and a request to
bring in pages of the segment is generated.

In order to do this, a page table must be created for that
segment; this action may require that a page of core be re­
moved to make room for the page table. The requested
segment has yet to be brought into core memory, but now
it has a page table.

As the original process tries further to complete its reference
to the segment, a missing page fault occurs. After locating
the page on secondary storage, a call to the appropriate
device interface module (DIM) brings it into core memory.
Loading this page in core may require the removal of some

@@~[PlA\'[j'm~HL[g~J®OOOO ____________ _
76

other page belonging to this, or some other, process. This
may involve copying a page onto secondary storage; there­
fore, a map of core is consulted to determine which
pages can be removed. The request to remove a page is
queued waiting on a DIM operation which may call the
I/O system to perform the actual removal.

Since loading of a page, and possible copying of page onto
secondary storage is time-consuming, the process generating
the missing page fault is blocked until the page actually ar­
rives in core. Then the process is awakened and final refer­
ence to the page completed. Future references to the same
page will not usually cause a repetition of these steps.

FILE RETRIEVAL FROM SYSTEM'S VANTAGE POINT

All segments - either procedure or data - are referred to
by a symbolic name. Only the basic fIle system knows of
their physical locations in either memory or secondary
storage. When a segment is first referenced, a module out­
side the fIle system - the linker module - gains control
through a linkage fault.

The linker requests the segment management module to
consult the SNT to see if it knows about the named seg­
ment. A segment name in a given process is a symbolic
name by which that process may reference the segment
and which corresponds to the name of an entry in the
directory hierarchy.

If the SNT doesn't have an entry for the named segment,
the segment management module calls the search module
for advice on how to locate the segment. It then invokes
directory control to manipulate directories and locate the
segment. Once it is located, an entry is made for it in the
SNT and control is passed back to the linker.

Figure 31 shows the interrelationships of software modules
during the fIle retrieval process.

The solid lines indicate the flow of control through the
use of formal calling sequences; arrows designate direction.
The circles indicate some of the data bases (directories and
various tables) used by the Multics system in its processing
and dashed lines demarcate the fIle system from the rest
of Multics.

The basic fIle system accomplishes its functions through
the actions and interactions of these modules:

1) Segment control

2) Directory control

3) Access control

4) Page control

5) Core control

6) Device interface modules (DIMS)

Once the segment is located, segment control must estab­
lish the segment as. known to the process by creating an
entry for it in the KST, sorting a segment descriptor word
in the descriptor segment and returning a segment number

to the linker. Before segment control can do this, access
control must determine the user's right to access that seg­
ment. As the figure illustrates, segment control and di­
rectory control are the only fIle system modules which can
be directly called by the user.

As the linker tries to make a reference to the segment, a
missing segment fault takes it directly back to segment con­
trol. An entry for the segment is established in the AST in
the manner described in the previous discussion; then page
control is called to read in a page of the segment. It pre­
pares the page table before returning control through seg­
ment control to the linker.

Page control is also invoked as a result of a missing page
fault; this occurs when the calling process makes a further
reference to the segment. Making use of the information
kept in system segment tables (SST's), page control locates
the page on secondary storage and calls the device interface
module (DIM) for the appropriate device. All DIM's, exceJ't
the extended memory unit DIM, interface with the I/O
system at this point and must call the I/O system whenever
they want a page transported to or from secondary storage.
Core control is invoked to account for the availability and
allocation of core space; it frees an area of core and the
page is read in.

Once a segment is in core and is treated as part of a process
the Process Exchange in the Multics supervisor monitors all
functions in which it is involved.

MULTILEVEL AND BACKUP SYSTEM

The multilevel system is concerned with assigning fIles to
storage devices, moving them to other devices, and pro­
viding storage space as required by fIles. The backup sys­
tem provides for retrieval and protection of fIles against
destruction by user mishandling or hardware malfunction.
The backup system consists of a group of dump procedures
that copy fIles periodically onto detachable storage and re­
covery procedures for restoring the most recent copies re­
quired. Procedures of the multilevel and backup system
operate in the administrative ring while those of the basic
fIle system operate in the hardcore ring.

MULTILEVEL STORAGE MANAGEMENT

The multilevel system controls the movement of fIles within
the storage hierarchy by assigning the most active fIles to
the faster devices and the least active to the slower devices.
File activity is determined by a procedure of the multilevel
system from information on the number of times the fIle
has been accessed. This multilevel storage procedure is in­
voked each time a segment is activated, so that the proce­
dure keeps an accurate account of access information.

Whenever a segment is to be moved, the multilevel system
determines the target device on the basis of the segment's
user access history .

The multilevel system also provides a means whereby a stor­
age device does not become overcrowded with inactive
fIles assigned at a time when they were being accessed
more frequently.

©@~[pruu~rn[u~~!®®® ____________ _
77

Linker

Segment
Management

Module

Search
Module

I

I
I
I
I
I

Access
Control

Directory
Control

Segment
Control

Core
Control

Page
Control

Process
Exchange

DIMs

Figure 31. File Retrieval as Seen by the Basic File System

THE BACKUP FILE SYSTEM

The backup system protects all mes against accidental de­
struction. A number of processes search up and down the
me system hierarchy and copy all recently modified or re­
cently created segments. Copies are made in duplicate
on detachable storage which can be physically removed
and saved. The standard backup processes enjoy free­
dom of the me system hierarchy; however, they can
be denied access to segments that are highly secure.

Backup of the security information is effected by special
processes with access to this type of information.

Copying me system data on backup/storage is called dump­
ing. There are three types of dumps within Multics; incre­
mental, system-checkpoint, and user-checkpoint.

A set of procedures collectively called the incremental
dumper operate constantly whenever the Multics system is
functioning. It makes frequent passes over the me system

©@~[Pffiuo!~H!J~~J®®® ____________ _

78

hierarchy, searching out segments and directory entries
that have changed since the last dumping operation; then it
directs the changed segments and directory entries to be
dumped onto detachable storage. Incremental dumping
produces a constant stream of output which represents all
modifications to any part of the on-line storage system.

In the event of a catastrophe, the total reloading of all
preserved incremental storage would be impractical. To
minimize the time to recover after a catastrophe, periodic
checkpoint measures are taken to reduce the total volume
of backup storage. If on-line storage were destroyed, the
following information would be required to restore the sys­
tem to general use:

1) a set of necessary files used by components of the
operating system

DUMP CONTENTS

2) accounting mes

3) a complete hierarchy skeleton (copies of all directory
entries).

Periodic checkpoint dumping of this information provides
recent versions of this data and allows an early return to
normal system operation.

The user checkpoint dumper is a collection of procedures
which run periodically, dumping segments used or modified
since the last running time. Output of this type of dump is
discarded as it is replaced by more current versions.

A comparison of dumper output is illustrated in the follow­
ing chart.

TIME OF OCCURRENCE

Incremental All segments and directories from time t to time T. Constantly during operation.
0

System Checkpoint Just enough information to quickly restore the Determined by system
system to normal operation. strategy modules when

essential mes are changed.

User Checkpoint Recently changed segments and directories. Periodically; the time

In the event of a catastrophe, me system information is
reloaded into on-line storage from the detachable devices
in the following order:

1) First, those segments and directory entries most recently
dumped by incremental dumping are reloaded.

2) Second, the information dumped as a result of the most
recent system checkpoint dump is reloaded.

At this point, normal operation of the system is recovered
and the me system data can be reloaded under normal con­
trol of the Multics system. The third step to recovery from
a catastrophe is to reload the remainder of the information
dumped by the incremental dumper; and finally, the in­
formation accrued from the most recent user checkpoint
dump is reloaded. During the recovery procedure, the data
and time of me creation, or modification, is referred to by
the backup me system which uses this information to en­
sure that only the most recent copy of the me remains in
on-line storage.

It is often possible to salvage the contents of secondary
storage without resorting to the reloading procedure out­
lined above. In this way the time required for recovery is
reduced. The salvage procedure reads all the directories in
the me system hierarchy and corrects information when­
ever possible. Since only directories and storage assignment
tables are read, the salvage procedure can be run in a frac­
tion of the time required to effect a complete reload.

79

interval is set at system
initialization time.

Consolidation is effected whenever the amount of incre­
mental backup storage becomes unwieldy. Segments
dumped onto the area of storage allotted to them remain
there for a limited time; then, they are removed from on­
line to off-line storage by a removal mechanism. A trans­
action record which is accessible to the modules that per­
form consolidation ensures that although a segment no
longer exists within secondary storage, it still remains
known to the me system.

I/O SYSTEM

The I/O system contains the procedures by which processes
communicate with external devices, and is designed to:

A) interface user procedures with I/O devices in such a
way that the user procedure is independent of any
I/O device;

B) provide a degree of modularity, consistent with oper­
ating efficiency, that allows new devices to be added
with minimum coding effort by use of the I/O Table
Compiler.

The I/O system works in conjunction with the GIOC to
effect transfer of information to and from peripheral or
terminal devices.

The I/O system maintains a list of connections between
I/O names and physical devices. The I/O system takes the
name from the read or write directive, locates the name in
the connection list, and calls the appropriate modules within

the I/O system to perform the input/output. When the re­
quested I/O has been initiated, the I/O system can call
another module, go block~d awaiting a request, or return
control to the calling process. The specific return action is
based on information in the I/O system modules and on in­
formation in the connection list.

The Multics I/O system may be divided into two categories:
hardcore I/O and device I/O. Hardcore I/O consists of the
GIOC interface module (GIM). Device I/O comprises the
remainder of the I/O system modules.

GIOC INTERFACE MODULE

The I/O routines that are most directly concerned with the
manipulation of the hardware constitute the GIOC interface
module (GIM). Calls to the GIM can cause it to list, define,
alter, or connect, channels which interface the I/O system
with the GIOC, and ultimately with the various devices. The
GIM has the following functions:

a) The GIM prepares lists of DCW's which, when decoded
by the GIOC, cause the desired I/O function to be per­
formed.

b) The GIM associates particular GIOC channel numbers
with the various devices.

c) The GIM initiates activity on an I/O channel and passes
status returns for that channel to the caller of the GIM.

The GIM is the most important module in the software
interface to the GIOC. The GIM has control over all the
facilities of the GIOC and, consequently, is located in the
hardcore ring of the Multlcs system. The GIM is faced on
one side with the hardware present in the GIOC and is
faced on the other side with the software processes which
use the hardware to control the amount and type of hard­
ware activity.

Calls to the GIM are divided into two major categories
which are:

a) Calls to create the DCW, CIW lists

b) Calls to use the DCW, CIW lists.

Calls in category (a) assign a data channel to a process, de­
rme the CIW to be used for that channel, create space for
a list, and release space for a list. Calls in category (b) can
change the contents of a list, activate a list, and process
status words caused by active lists.

DEVICE I/O

In the next level of abstraction from the hardware, are
routines called device interface modules (DIM's). For each
device, there is at least one DIM. In some cases, there is
more than one DIM for a given device. The modules at
this level accept such calls as read, write, attach, and
detach. The functions of the DIM's are:

a) To provide a degree of uniformity in I/O calls to the
various devices by generating pseudo DCW lists, indirect­
ly through the GIM to the devices. These pseudo DCW
lists are passed to a particular device in a particular se­
quence through the GIM, which changes them from sym­
bolic to machine code and relays them to the GIOC
mailbox areas. The meaning of a DCW list must be inter­
preted by the device itself.

b) To provide for default error recovery and exception
handling, such as retrying a write following a parity
error (in writing tape) without user intervention.

c) To perform code conversion when necessary.

d) To perform read-ahead and write-behind for many of the
devices. For example, the typewriter DIM can accept a
user message before it has received a read request from
the user's process.

e) To perform (for devices such as tape) blocking of data
into uniform physical record sizes, supplying an identi­
fying prefix for each record.

For each type of device in the system there are usually two
DIM modules: a device strategy module (DSM), and a de­
vice control module (DCM). Optionally, a third module may
be provided, the code conversion module.

Many peripheral and/or terminal devices share common
attributes and can be grouped into classes. Each device
strategy module (DSM) in the I/O system is designed to
function for a particular class of devices.

There is a device manager procedure (DMP) for each phys­
ical device. A DSM working process normally initiates I/O
via a wakeup to the device manager process for the device
in response to status information from GIM. The DMP may
encompass one or more DCM's and can drive one, or many,
devices.

The control of a particular device is the function of a de­
vice control module (DCM). The DCM converts the device
capabilities assumed by the DSM into the capabilities of
the device. This is accomplished by transforming DSM re­
quests into physical I/O requests for the device.

©@~[plirO'~rn[L[~~t®®® ____________ _
80

APPENDICES

@@~[f)lAYlf~rn[L~~!®®® ___________ _

A. INSTRUCTION REPERTOIRE

The following table is a complete list of the instructions
of the GE645 processor.

EXECUTION TIME NOTES

The listed execution times are the average time for a pair
of instructions and are determined for the following general
conditions:

1) The pair is preceded and followed by instructions of the
same type.

2) Addresses are such that instruction fetch for the next
instruction pair and operand fetches of the pair overlap.

3) Register (R) address modification is used. (No indirect
addressing.)

4) All necessary descriptor words for segmentation and
paging operations are available in the associative memory.

The average execution time for an instruction pair, is de­
fined as the time interval between the start of address
preparation for the even instruction of the pair, and the
start of address preparation for the even instruction of the
next pair. The average execution time then is one-half the
execution time of the pair.

Some exceptions to the above definition of average exist.

1) Short load type instructions (i.e., LDA, LDAQ, ADA,
ADAQ) require small enough processor operation time
that overlap does not occur.

2) Store type (i.e., STA, STAQ, FST, ASA, etc.) instruc­
tions are preceded by a short load type instruction for
timing purposes. Then the store type execution time is
the pair execution time less the calculated short load
type exeuction time.

3) For control type (i.e., TRA, TNC, XEC) instructions
that fetch another instruction, timing is determined by
the time interval between the start of address prepara­
tion for the control type instruction and the start of
address preparation of the next instruction to be ex­
ecuted. This time is different depending on whether
the next instruction is from an odd or even address so
an average is used. Also the time is significantly less
on conditional transfer instructions that do not transfer.

81

4) Base type instruction (LBRn, SBRn, EAPn, etc.) timing
is different since they may effect the Associative Mem­
ory. The listed execution time is the time interval be­
tween the start of address preparation of one base
type instruction and the start of address preparation of
the next base type; plus, one-half the instruction address
preparation time.

The execution time should be increased by the following
factors for address modification, segmentation, and paging
operations.

1) IR, RI modification: add 2.0 microseconds for each
indirection and add 2.3 microseconds for each ITS or
ITB indirection.

2) IT modification: add 2.0 microseconds if the contents
of the indirect word are not changed and 2.7 micro­
seconds if the contents are changed.

3) Segmentation and paging: add 1.6 microseconds for
each SDW or PTW that is not already in the associative
memory.

Instruction sequences containing several instruction types
require additional time factors in order that the listed ex­
ecution times can be used to calculate the actual execution
time of the complete sequence. Some examples which
need additional factors are listed below. Actual correction
factors require a detailed knowledge of processor operation
beyond the scope of this manual.

1) A transfer to or from a long load type instruction.

2) An instruction in location n which modifies instructions
or registers used by instructions in locations n + 1, n + 2
or n + 3.

3) Entry into a fault or interrupt routine.

In the following table the following comments are con­
cerned with the added description columns.

1) A "C" in the "Fault in Slave Mode" column indicates
a conditional fault. The fault occurs if the referenced
ABR is reserved for master mode only. (ABR bit 22 = 0).

2) Read - Alter - Rewrite (RAR) memory cycle instruc­
tions are identified because of their utilization in solving
race problems between 2 processors.

S1n' Vl CU
.- "t:l M 'U E-<= CU = ='9 >. = 0 "t:l .Q O~ ~U o g = 0 0 (1).- CI'l r;- «It)~ <:\.!:)

~~ DATA MOVEMENT 00- 0 .-:::E 2.5 Z
'" =' 0 -cu .- 2 E CU uu

'3~
u_ ~ ~ Q) (1)._

II cu"'o -- -.(~:::E '" 0 0 "' ~,s~ ,s= ;:::l:::E Z LOAD ~ '-" = ~tIl

LDA Load Accumulator 1.7
LDQ Load Quotient Register 1.7
LDAQ Load A-Q Register 1.9
LDXn Load Index Register n 1.7 x
LDLXn Load Index Register n from Lower 1.7 x
LCA Load Complement into Accumulator 1.7
LCQ Load Complement into Quotient Register 1.7
LCAQ Load Complement into A-Q Register 1.9
LCXn Load Complement into Index Register n 1.7 x
FLD Floating Load 1.7
DFLD Double-Precision Floating Load 1.9
LDE Load Exponent Register 1.7
LDI Load Indicator Register 1.7
LDT Load Timer Register 1.7 x
LREG Load Registers 6.3
LDB Load Address Base Registers 6.9 x 4
LBRn Load Address Base Register n 3.0 x C x
LDBR Load Descriptor Base Register 3.0 x x
LDCF Load Control Field 3.7 C x
LAM Load Associative Memory 22.5 x x 2
CAM Clear Associative Memory 2.0 x x
EAA Effective Address to Accumulator 1.5
EAQ Effective Address to Quotient Register 1.5
EAXn Effective Address to Index Register n 1.5 x
EABn Effective Address to Base Register n 2.0 x C x
EAPn Effective Address to Base Pair n 2.4 x C x
LBAR Load Base Address Register 2.0

STORE

STA Store Accumulator 2.1
STQ Store Quotient Register 2.1
STAQ Store A -Q Register 2.6
STXn Store Index Register n 2.1 x
STLXn Store Index Register n in Lower 2.1 x
STZ Store Zero 2.4

©®~[pffiu~rn[L~~J ®®®
82

(I)

§1n' <n (I)
• "c:I ('t') '0 E-o= -8 = ='9 >.
=0 .9 .9~ p:::u 0 0 = 0 0

DATA MOVEMENT Q) ~ t-- c;Jt)~ t)~ ~~ 00 0 I ;:g Z ..s ;:s ...
0 (1) 8 § 8.S (I) ... 0 0

~~ 0 (1)= Q) (1) ~o
<~;:g 1/ (1)"'0 ",(I) 0

STORE ~'-' = ~V3 ~.$~ .$= O;:g Z

STCA Store 6-bit Characters of Accumulator 2.1 x

STCQ Store 6-bit Characters of Quotient Register 2.1 x

STBA Store 9-bit Characters of Accumulator 2.1 x

STBQ Store 9-bit Characters of Quotient Register 2.1 x

FST Floating Store 2.1

DFST Double-Precision Floating Store 2.6

STE Store Exponent Register 2.1

STI Store Indictor Register 2.5

STT Store Timer Register 2.4

STCI Store Instruction Counter + 1 and Indicators 2.5

STC2 Store Instruction Counter +2 2.5

SREG Store Registers 8.6

STB Store Address Base Registers 8.3 -x

SBRn Store Address Base Register n 2.2 x x

SDBR Store Descriptor Base Register 2.2 x x

STPn Store Pair in Address Base Register n 2.3 x x

SAM Store Associative Memory 29.9 x x 2

ZAM Store Associative Memory Zero 2.8 x x 2

STAC Store Accumulator Conditional 3.7 x x

SCU Store Control Unit 6.4 x

SBAR Store Base Address Register 2.0

STCD Store Control Double 2.8 x

ARITHMETIC INSTRUCTION

FIXED POINT ADDITION

ADA Add to Accumulator 1.7

ADQ Add to Quotient Register 1.7

ADAQ Add to A-Q Register 1.9

ADXn Add to Index Register n 1.7 x

ADLA Add Logical to Accumulator 1.7

ADLQ Add Logical to Quotient Register 1.7

ADLAQ Add Logical to A-Q Register 1.9

ADLXn Add Logical to Index Register n 1.7 x

ASA Add Stored to Accumulator 3.7 x

©@~[?[ijv~rn[L~~!®®® ____________ _
83

cu
S-u;- V'l ~ '1:l M

E-oi:::: CU i:::: i::::'9 >.
i:::: 0 '1:l .9 o~ ~u ci OU i:::: 0 +=l'-' ~.-= ~ t"-

cao~ ~~ I ;:g U i:::: Z
CIS =' 0 0 cu '02 S 2·-ARITHMETIC INSTRUCTION ~(,.)tl

~E
cu

CD cu·_ II =~ cu
<~6 CIS p.."'o '" 0 0

i:::: ~oo oo..5~ ..5i:::: ~;:g Z

FIXED POINT ADDITION

ASQ Add Stored to Quotient Register 3.7 x

ASXn Add Stored to Index Register n 3.7 x x

AWCA Add with Carry to Accumulator 1.7
AWCQ Add with Carry to Quotient Register 1.7
ADL Add Low to A-Q Register 1.7
AOS Add One to Storage 3.7
ADBn Add to Address Base Register n 3.3 x C x

FIXED POINT SUBTRACTION

SDA Subtract from Accumulator 1.7
SBQ Subtract from Quotient Register 1.7
SBAQ Subtract from A-Q Register 1.9

SBXn Subtract from Index Register n 1.7 x

SBLA Subtract Logical from Accumulator 1.7
SBLQ Subtract Logical from Quotient Register 1.7
SBLAQ Subtract Logical from A-Q Register 1.9

SBLXn Subtract Logical from Index Register n 1.7 x

SSA Subtract Stored from Accumulator 3.7 x

SSQ Subtract Stored from Quotient Register 3.7 x

SSXn Subtract Stored from Index Register n 3.7 x x

SWCA Subtract with Carry from Accumulator 1.7
SWCQ Subtract with Carry from Quotient Register 1.7

FIXED POINT MULTIPLICATION AND DIVISION

MPY Multiply Integer 7.1
MPF Multiply Fraction 7.1
DIV Divide Integer 14.1
DVF Divide Fraction 14.1

FLOATING POINT ARITHMETIC INSTRUCTIONS

FAD Floating Aid 2.0
DFAD Double-Precision Floating Aid 2.1

@@~[pffi'jJ'~rnOJ~~!®®® ______________ _

84

<u,-..

.5.a V'l <U
M 'U E-o= <U = ="9 >. = 0 '1:1 .g .g~ ~u o u = 0 ci

ARITHMETIC INSTRUCTION ~~ ~ r;- ~ CTltl~ t)~ ~~ Z «I ;::s 0
;:::~ 'u e s e.s ~ CJ t) 0

cu S cu
(I) (1)._

11 g «I
cu

<&16 c.."'o "'0 '" cu 0
FLOATING POINT ARITHMETIC INSTRUCTIONS = \l..oOO rn..5\l..o ..5= ;::>~ Z

UFA Unnormalized Floating Aid 2.0
DUFA Double-Precision Unnormalized Floating Aid 2.1
ADE Add to Exponent Register 1.7
FSB Floating Subtract 2.5
DFSB Double-Precision Floating Subtract 2.5
UFS Unnormalized Floating Subtract 2.5
DUFS Double-Precision Unnormalized Floating Subtract 2.5
FMP Floating Multiply 6.0
DFMP Double-Precision Floating Multiply 11.9
UFM Unnormalized Floating Multiply 5.8
DUFM Double-Precision Unnormalized Floating Multiply 11.6
FDV Floating Divide 14.5
DFDV Double-Precision Floating Divide 23.6
FDI Floating Divide Inverted 14.1
DFDI Double-Precision Floating Divide Inverted 23.2

MISCELLANEOUS ARITHMETIC INSTRUCTIONS

NEG Negate Accumulator 1.5
NEGL Negate Long 1.5
FNEG Floating Negate 1.5
FNO Floating Normalize 1.5

LOGICAL INSTRUCTIONS

AND

ANA AND to Accumulator 1.7
ANQ AND to Quotient Register 1.7
ANAQ AND to A -Q Register 1.9
ANXn AND to Index Register n 1.7 x

ANSA AND to Storage Accumulator 3.7 x

ANSQ AND to Storage Quotient Register 3.7 x

ANSXn AND to Storage Index Register n 3.7 x

OR

ORA OR to Accumulator 1.7

ORQ OR to Quotient Register 1.7

©@~[Pm'[]'~rn[U~~! ®®®
85

<1)_
.§~ V\ <I)

M '0 E-<c:: <I) c:: c::~ >. c:: 0 "CI .S .S~ ~U o g 0 ci
LOGICAL INSTRUCTIONS (1).~ ~ r-;- .S;::E o;o1;j oQ ~~ Z 00 0

"';j 0 '::::<1) 2 § 2.S <I) (.) (.)

;j~ (.)
~o <I) e Q) 0).1'"'4

II (1)"'0 0 <~6
",(1) "' ~.$~ .$s::: ::>;::E Z OR s::: ~rIl

ORAQ OR to A-Q Register 1.9
ORXn OR to Index Register n 1.7 x
ORSA OR to Storage Accumulator 3.7 x
ORSQ OR to Storage Quotient Register 3.7 x
ORSXn OR to Storage Index Register n 3.7 x x

EXCLUSIVE OR

ERA EXCLUSIVE OR to Accumulator 1.7
ERQ EXCLUSIVE OR to Quotient Register 1.7
ERAQ EXCLUSIVE OR to A-Q Register 1.9
ERXn EXCLUSIVE OR to Index Register n 1.7 x
ERSA EXCLUSIVE OR to Storage Accumulator 3.7 x
ERSQ EXCLUSIVE OR to Storage Quotient Register 3.7 x
ERSXn EXCLUSIVE OR to Storage Index Register n 3.7 x x

COMPARISON INSTRUCTIONS

CMPA Compare with Accumulator 1.7
CMPQ Compare with Quotient Register 1.7
CMPAQ Compare with A-Q Register 1.9
CMPXn Compare with Index Register n 1.7 x
CANA Comparative AND with Accumulator 1.7
CANQ Comparative AND with Quotient Register 1.7
CANAQ Comparative AND with A -Q Register 1.9
CANXn Comparative AND with Index Register n 1.7 x
CNAA Comparative NOT with Accumulator 1.7
CNAQ Comparative NOT with Quotient Register 1.7
CNAAQ Comparative NOT with A-Q Register 1.9
CNAXn Comparative NOT with Index Register n 1.7 x
CMK Compare Masked 1.7
CMG Compare Magnitude 1.7
CWL Compare with Limits 1.7
SZN Set Zero and Negative Indicators from Storage 1.7
FCMP Floating Compare 1.8
FCMG Floating Compare Magnitude 1.8
DFCMP Double-Precision Floating Compare 1.9

@@[DJlPli\u~rn[l~~j ®®®
86

Q),-...

.§~ V'l Q)

('t') u r-oc Q) c c'9 >.
CO "0 .9 ow c:z:::U o u

CO 0 ~:;:: ~ r-;~ C) «C COMPARISON INSTRUCTIONS ~ «I. U o:j Z o:j ::s 0 ::s § 2.5 c:z:::o ~ u t 0 !::~ U ...
Q) S Q)

Q) (1).-
II ~ o:j Q.)~o

~~~ '" 0 '" Q) 0 
w,-, c ~Ci'i ~.E~ .Ec ~~ Z 

DFCMG Double-Precision Floating Compare Magnitude 1.9 

FSZN Floating Set Zero and Negative Indicators 1.7 
from Storage 

CONTROL INSTRUCTIONS 

TRA Transfer Unconditionally 3.0 

TZE Transfer on Zero 3.0 3 

TNZ Transfer on Non-Zero 3.0 3 

TPL Transfer on Plus 3.0 3 

TMI Transfer on Minus 3.0 3 

TRC Transfer on Carry 3.0 3 

TNC Transfer on No Carry 3.0 3 

TOV Transfer on Overflow 3.0 3 

TTF Transfer on Tally Run out -Indicator Off 3.0 3 

TEO Transfer on Exponent Overflow 3.0 3 

TEV Transfer on Exponent Underflow 3.0 3 

TSS Transfer and Set Slave 3.0 x 

TSXn Transfer and Set Index Register n 3.0 x 

TSBn Transfer and Set Base Address Register n 3.9 x C x 

RET Return 3.7 

RTCD Return Double 4.0 x 

RCU Restore Control Unit 5.9 x x 

MME Master Mode Entry 1 2.0 

MME2 Master Mode Entry 2 2.0 x 

MME3 Master Mode Entry 3 2.0 x 

MME4 Master Mode Entry 4 2.0 x 

DRL Derail 2.0 

XEC Execute 2.0 

XED Execute Double 2.0 

SHIFTING INSTRUCTIONS 

ALS Accumulator Left Shift 1.5 

ARS Accumulator Right Shift 1.5 

ALR Accumulator Left Rotate 1.5 

ARL Accumulator Right Logical 1.5 

QLS Quotient Register Left Shift 1.5 

©®~[?ffilJ~rn[U~~ t ®®® 
87 



<I.l_ 

.§~ lrl <I.l 
m U 1'-<::: <I.l ::: :::~ >-::: 0 '1:l 0 0"", ~u <1>.9 ~ r;- ::: 0 <;It;<o;; t;c.:i ~~ 

0 
SHIFTING INSTRUCTIONS OIl ...... 0 .- ::E Z ~ ~ .... ·u 8 S 8·S .... u u 0 .:!:~ <I.l S <I.l 

(l,) 0)._ 
II ~ ~ <I.l .......... ........... ..... 

~~::E 0.."'0 '" 0 '" <I.l 0 
"",,-, ::: ..... Fi'i Vl..5 ..... ..5::: ::J::E Z 

QRS Quotient Register Right Shift 1.5 
QLR Quotient Register Left Rotate 1.5 

QRL Quotient Register Right Logic 1.5 

LLS Long Left Shift 1.5 

LRS Long Right Shift 1.5 

LLR Long Left Rotate 1.5 

LRL Long Right Logical 1.5 

SPECIAL INSTRUCTIONS 

CIOC Connect I/O Channel 1.4 x 

LACL Load Alarm Clock 2.6 x x 
RCCL Read Calendar Clock 1.9 x 
SMIC Set Memory Module Interrupt Cells 2.0 x 

RMCM Read Memory Module Mask Register 1.9 x 

SMCM Set Memory Module Mask Register 4.0 x 
NOP No Operation 1.5 

RPT Repeat 1.4 x 

RPD Repeat Double 1.4 x 

RPL Repeat Link 1.4 x 

BCD Binary to Binary Coded Decimal 3.7 
GTB Gray to Binary 9.9 

DIS Delay Until Interrupt Signal x 
RSW Read Switches 1.4 x 

NOTE 1: Causes 635 Compatibility Fault. 

NOTE 2: Execution Time shown is for absolute mode; add 3.5 microseconds for master mode. 

NOTE 3: Execution times shown assume a transfer takes place. If no transfer, Execution Time is 1.6 microseconds. 

NOTE 4: ABRn will not be loaded if ABRn(22) = 1 and slave mode set. 

©@~[pffiu~rn~~~t®®® __________ ~--
88 



B. HARDWARE SUMMARY 

In this appendix each modular hardware component of the 
GE-645 system is identified and described briefly. 

PROCESSOR (CP8031) 

The processor provides the program execution capability of 
the GE-645 system. It is a free-standing cabinet. 

PROCESSOR PORT PAIR (CPP600) 

One processor port pair for connection of the processor 
to two system controllers is basic equipment in each pro­
cessor. Up to three additional processor port pairs can be 
added for connections to additional system controllers. 
All processor port pairs can be installed in the processor 
cabinet. 

GENERALIZED INPUT/OUTPUT CONTROLLER (GIOC) 
(DC8031) 

The GIOC controls input/output operations initiated by a 
processor. It is a free-standing cabinet. 

GIOC PORT PAIR (MIP600) 

One GIOC port pair for connection of the GIOC to two 
system controllers is basic equipment in each GIOC. Up to 
three additional GIOC port pairs can be added for con­
nections to additional system controllers. All GIOC port 
pairs can be installed in the GIOC cabinet. 

PRIORITY LEVEL GROUP (PLP600) 

Two priority level groups are basic equipment in each 
GIOC. Each priority level group provides twelve priority 
levels for controlling the servicing of adapters and GIOC 
overhead channels. Up to six additional priority level 
groups can be added to meet priority requirements imposed 
by additional adapters. All priority level groups can be in­
stalled in the GIOC cabinet. 

ADAPTER CABINET (CAB600) 

One adapter cabinet to provide cabinet space for GIOC 
adapters is basic equipment with each GIOC. One or two 
additional adapter cabinets can be added to meet cabinet 
space requirements imposed by additional adapters. Each 
adapter cabinet is a free-standing cabinet. 

INDIRECT PERIPHERAL ADAPTER (IPA600) 

One indirect peripheral adapter, which provides the neces­
sary control for up to six indirect peripheral channels, is 
basic equipment with each GIOC. Additional indirect pe­
ripheral adapters can be added to meet requirements for 

additional indirect peripheral channels. All indirect periph­
eral adapters are for installation in adapter cabinets. 

INDIRECT PERIPHERAL CHANNEL (IPC600) 

Six indirect peripheral channels are basic equipment with 
each GIOC. Each indirect peripheral channel provides for 
the operation of one low-speed peripheral device, such as 
a card reader, card punch, printer, or perforated tape sub­
system. Additional indirect peripheral channels can be 
added to meet requirements for multiple low-speed pe­
ripheral devices. All indirect peripheral channels are for in­
stallation in indirect peripheral adapters. 

HIGH PERFORMANCE CHANNEL (HPC600) 

One high performance channel is basic equipment with each 
GIOC. Each high performance channel provides for the 
operation of one high-speed peripheral subsystem, such as 
a magnetic tape, magnetic drum, or mass storage subsys­
tem. Additional high performance channels can be added 
to meet requirements for additional high-speed peripheral 
subsystems. All high performance channels are for installa­
tion in adapter cabinets. 

DIRECT DISC ADAPTER (DDA600) 

The direct disc adapter provides for the 2 channel operation 
of the disc storage controller (DSCllF) and its associated 
disc storage units. More than one direct disc adapter can 
be used if there is a requirement for more than one disc 
storage controller. Direct disc adapters can be installed in 
adapter cabinets. 

TELETYPEWRITER ADAPTER (TTA600) 

The teletypewriter adapter provides the necessary control 
for up to four teletypewriter channel groups operating at 
the same speed. More than one teletypewriter adapter can 
be used if there is a requirement for additional teletype­
writer channel groups or speeds. Teletypewriter adapters 
can be installed in adapter cabinets. 

TELETYPEWRITER CHANNEL GROUP (TTC600) 

Each teletypewriter channel group provides eight teletype­
writer channels for half-duplex operation with telegraph 
grade lines. Teletypewriter channel groups can be installed 
in teletypewriter adapters. 

TELETYPEWRITER CHANNEL EXTENSION (TTL600) 

The teletypewriter channel extension provides additional 
capability to the channels of one teletypewriter channel 
group, allowing those channels to operate with data sets 

©@~[PffiuOOO[L[~~!@®® ____________ _ 
89 



such as Bell System 103A, 103E, and 1 03F. Teletype­
writer channel extensions can be installed in teletypewriter 
channel groups. 

TELETYPEWRITER SPEED OPTIONS 

Each teletypewriter adapter requires one teletypewriter 
speed option to determine the speed at which the channels 
in that adapter are to operate. The teletypewriter speed 
option is installed in the teletypewriter adapter. The fol­
lowing speed options are available: 

Speed Option 
Type Number 

TTS605 
TTS6l0 
TTS6l5 
TTS620 
TTS625 
TTS630 
TTS635 
TTS640 

Speed 
(bits/second) 

45.5 
50 
56.9 
74.2 

110 
133.2 
150 
165 

CHARACTER ASYNCHRONOUS ADAPTER (CAA600) 

The character asynchronous adapter provides the neces­
sary control for up to three character asychronous chan­
nels operating at the same speed. More than one character 
asynchronous adapter can be used if there is a require­
ment for additional channels or speeds. Character asyn­
chronous adapters can be installed in adapter cabinets. 

CHARACTER ASYNCHRONOUS CHANNEL (CAC600) 

Each character asynchronous channel provides capability 
for operation with data sets such as Bell System 202C and 
202D. Character asynchronous channels can be installed 
in character asynchronous adapters. 

CHARACTER SYNCHRONOUS ADAPTER (CSA600) 

The character synchronous adapter provides the necessary 
control for up to three character synchronous channels. 
More than one character synchronous adapter can be used 
if there is a requirement for additional channels. Charac­
ter synchronous adapters can be installed in adapter 
cabinets. 

CHARACTER SYNCHRONOUS CHANNELS (CSC600) 

Each character synchronous channel provides capability 
for operation with data sets such as Bell System 20lA3 
and 20lB. Character synchronous channels can be installed 
in character synchronous adapters. 

DIALING ADAPTER (DGA600) 

The dialing adapter provides the necessary control for up 
to eight dialing channels. More than one dialing adapter 
can be used if there is a requirement for additional chan­
nels. Dialing adapters can be installed in adapter cabinets. 

DIALING CHANNELS (DGC600) 

Each dialing channel provides capability for operation 
with automatic call units stich as Bell System 80lA and 
801C. Dialing channels can be installed in dialing adapters. 

CUSTOM DIRECT ADAPTER (CDA600) 

The custom direct adapter provides a direct channel for 
attaching a special customer interface. More than one 
custom direct adapter can be used if there is a requirement 
for additional channels. Custom direct adapters can be in­
stalled in adapter cabinets. 

EXTENDED MEMORY CONTROLLER (EMC30~) 

The extended memory controller provides the necessary 
control for operation of one extended memory unit. The 
extended memory controlled is a free-standing cabinet. 

EMC PORT PAIR (APP302) 

One EMC port pair for connection of the extended memory 
controller to two system controllers is basic equipment in 
each extended memory controller. Up to three additional 
EMC port pairs can be added for connections to additional 
system controllers. All EMC port pairs can be installed in 
the extended memory controller. 

EXTENDED MEMORY UNIT (EMU302) 

One extended memory unit is basic equipment with each 
extended memory controller. The extended memory unit 
is a rotating storage device with a storage capacity of 4 mil­
lion 36-bit words, and an average transfer rate of 470,000 
words per second. The extended memory unit is a free­
standing cabinet. 

EMU COOLING UNIT (MCU302) 

One EMU cooling unit, which provides necessary cooling 
for the extended memory unit, is normally required with 
each extended memory unit. The EMU cooling unit is a 
free-standing unit. 

SYSTEM CONTROLLER (MM8040) 

The system controller provides 32,768 36-bit words of 
core memory having a one microsecond cycle time, to­
gether with the means for allowing processors, GIOCs, and 
extended memory controller to send control information 
to each other. The system controller is a free-standing 
cabinet. 

MEMORY PORT (OPT802) 

Two memory ports for connection of the system controller 
to two modules, such as a processor, GIOC, or extended 
memory controller, are basic equipment in each system 
controller. Up to six additional memory ports can be added 
for connections to additional modules. All memory ports 
can be installed in the system controller. 

@@~[PlA\u~rn[L~~t®®®· ____________ _ 

90 



INTERRUPT CELL GROUP (OPT815) 

One interrupt cell group, consisting of 16 interrupt cells, 
is basic equipment in each system controller. The inter­
rupt cells are used by processors, GIOCs, and extended 
memory controllers to cause program interrupts in a spe­
cific processor. One additional interrupt cell group can be 
installed in the system controller. Two interrupt cell groups, 
consisting of 32 interrupt cells, are required for Multics 
operation. 

ADDITIONAL MEMORY MODULE (AMM600) 

The additional memory module provides 32,768 36-bit 
words of core memory having a one microsecond cycle 
time. One additional memory module can be installed 
in each system controller. One additional memory module 
can also be installed in each auxiliary memory cabinet. 

RECONFIGURA TION OPTION (REC600) 

The reconfiguration option provides the capability for re­
configuration of a system controller from a system con­
figuration console. One reconfiguration option is required 
in each system controller if the system includes one or two 
system configuration consoles. The reconfiguration option 
can be installed in the system controller. 

AUXILIARY MEMORY CABINET (CAB60l) 

The auxiliary memory cabinet provides cabinet space for 
additional core memory and for the calendar-alarm clocks. 
One auxiliary memory cabinet can be connected to each 
system controller. The auxiliary memory cabinet is a free­
standing cabinet. 

AUXILIARY MEMORY MODULE (AUM600) 

The auxiliary memory module provides 32,768 36-bit 
words of core memory having a one microsecond cycle 
time for installation as the first memory module in an 
auxiliary memory cabinet. 

CALENDAR-ALARM CLOCK (CLK600) 

The calendar-alarm clock is a program readable calendar 
clock with a precision of one microsecond and a program 
settable alarm clock with an accuracy of 64 microseconds. 
One or two calendar-alarm clocks can be installed in an 
auxiliary memory cabinet. 

MEMORY SWITCH (MSW600) 

One memory switch is necessary in each auxiliary memory 
cabinet which contains both core memory and a calendar­
alarm clock. 

SYSTEM CONFIGURATION CONSOLE (SCC600) 

The system configuration console provides a capability for 
semi-automatic system reconfiguration and startup. The 
system configuration console is a free-standing cabinet. 

PERIPHERAL EQUIPMENT 

CARD READER (CRZ20l) 

Each card reader connects to one indirect peripheral 
channel (IPC600), and is capable of reading 51- or 80-

column punched cards at the rate of 900 cards per 
minute. Two stackers are provided. 

CARD PUNCH (CPZ201) 

Each card punch connects to one indirect peripheral chan­
nel (IPC600), and is capable of punching 80-column cards 
at the rate of 300 cards per minute. 

EXTENDED CHARACTER SET PRINTER (PRT202) 

Each extended character set printer connects to one in­
direct peripheral channel (IPC600), and is capable of print­
ing all 94 ASCII graphic characters in l36 columns at the 
rate of 600 lines per minute. Lines containing only the 34 
most commonly used characters can be printed at the rate 
of 1200 lines per minute. 

PERFORATED TAPE SUBSYSTEM (PTS200) 

Each perforated tape subsystem connects to one indirect 
peripheral channel (IPC600), and is capable of reading at the 
rate of 500 characters per second and punching at the rate 
of 150 characters per second. The Perforated Tape Reader 
(PTR200) and the Perforated Tape Punch (PTP200) which 
make up the PTS200 can be obtained separately and used 
with an indirect peripheral channel. 

AUXILIARY CONSOLE (C08031) 

Each auxiliary console connects to one indirect peripheral 
channel (IPC600) and provides an input/output typewriter. 
This console is used for operator communications with the 
software. 

DUAL MAGNETIC TAPE CONTROLLER (MTC404) 

Each dual magnetic tape controller connects to two high 
performance channels (HPC600) and provides for simul­
taneous access to any two of up to 16 magnetic tape 
handlers. 

SINGLE MAGNETIC TAPE CONTROLLER (MTC400) 

Each single magnetic tape controller connects to one high 
performance channel (HPC600) and provides for access to 
anyone of up to eight magnetic tape handlers. 

MAGNETIC TAPE HANDLERS 

Any combination of the following magnetic tape handlers 
can be connected to a magnetic tape controller. 

Tape Handler Speed Densities 
TYEe Number Tracks Inches/sec. bits/inch 

MTH201 7 75 200,556 
MTH301 7 75 200,556,800 
MTH211 7 150 200,556 
MTH311 7 150 200,556,800 
MTH404 9 75 200,556 
MTH405 9 75 200,556,800 
MTH411 9 150 200,556 
MTH412 9 150 200,556,800 

©@~[pill'[J~rn[U~~tJ®OOOO ____________ _ 
91 



MAGNETIC DRUM CONTROLLER (MDC20l) 

Each magnetic drum controller connects to one high per­
formance channel (HPC600) and provides the necessary 
control for operation of one magnetic drum unit and one 
additional drum unit. The magnetic drum controller is a 
free-standing cabinet. 

MAGNETIC DRUM UNIT (MDU200) 

One magnetic drum unit is basic equipment with each mag­
netic drum controller. The magnetic drum unit is a rotating 
storage device with a storage capacity of 786,000 36-bit 
words and a maximum transfer rate of 60,000 words per 
second. The magnetic drum unit is a free-standing cabinet. 

ADDITIONAL DRUM UNIT (ADS201) 

The additional drum unit is a rotating storage device with 
a storage capacity of 786,000 36-bit words and a maximum 
transfer rate of 60,000 words per second. The additional 
drum unit is a free-standing cabinet. 

MASS STORAGE CONTROLLER (MSC388) 

Each mass storage controller connects to one high per­
formance channel (HPC600) and provides the necessary 
control for operation of up to four mass storage units. 
The mass storage controller is a free-standing cabinet. 

MASS STORAGE UNIT (MSU388) 

One to four mass storage units are connected to each mass 
storage controller. Each mass storage unit provides the 
capability of reading and writing information on flexible 
addressable magnetic cards which are stored in removable 
magazines. One mass storage unit with eight magazines has 
a storage capacity of more than 56 million 36-bit words. 
Information is transferred at the maximum rate of 13,333 
words per second. Each mass storage unit is a free-standing 
cabinet. 

PERIPHERAL SWITCH CONSOLE (PSC200) 

Each peripheral switch console provides cabinet space for 
up to 16 peripheral switch units. The peripheral switch 
console is a free-standing cabinet. 

PERIPHERAL SWITCH UNIT (OPTS 1 0) 

One peripheral switch unit is basic equipment in each pe­
ripheral switch console. Up to 15 additional peripheral 
switch units can be added to each peripheral switch console. 
One peripheral switch unit provides the capability for 
manually switching a periphenil between either of two high 
performance channels or two indirect peripheral channels, 
or for manually switching a high performance channel or 
indirect peripheral channel between either of two periph­
erals. 

DISK STORAGE CONTROLLER (DSC11F) 

Each disc storage controller connects to one or two direct 
disc adapters (DDA600) and provides for simultaneous 

access to 2 discs. Up to 8 disc storage units (DSU10F) can 
be accommodated by one disc storage controller. The disc 
storage controller is a free-standing cabinet. 

DISC ELECTRONICS UNIT (DEUl1F) 

One disc electronics unit is basic equipment with each disc 
storage controller (DSC 11 F), and provides interface logic 
up to 8 disc storage units (DSUIOF). The disc electronics 
unit is a free-standing cabinet. 

DISC STORAGE qNIT (DSUlOF) 

The disc storage unit contains rotating disc storage devices 
with a storage capacity of 16 million 36-bit words and a 
transfer rate (averaged over all tracks) of 200,000 words/ 
second per channel. Up to 8 disc storage units connect to a 
disc storage controller (DSC 11 F) through the disc electron­
ics unit. Each disc storage unit is a free-standing cabinet. 

DISC COMPRESSOR UNIT (DCUlOF or DCUOSF) 

The disc compressor unit is basic equipment with the disc 
storage unit and supplies compressed air to disc storage 
units (DSUIOF). The DCUOSF can supply one, and the 
DCU10F can supply three disc storage units with air. 

DISC STORAGE CONTROLLER (DSC200) 

Each disc storage controller connects to one high perfor­
mance channel (HPC600) and provides necessary control for 
the operation of from one to four disc storage units 
(DSU204). The disc storage controller is a free-standing 
cabinet. 

DISC STORAGE UNIT (DSU204) 

The disc storage unit contains 4 rotating disc storage devices 
with a total storage capacity of 983,000 36-bit words. The 
unit's capacity can be expanded to 3.9 million words by 
adding 12 additional discs. The transfer rate (averaged over 
all tracks) is 10,000 words/second. Up to four disc storage 
units connect to a disc storage controller (DSC200). Each 
disc storage unit is two free-standing cabinets (file and 
electronics). 

12 ADDITIONAL DISCS (OPT203) 

12 additional discs can be added· to the disc storage unit 
(DSU204). These additional discs can be installed in the 
disc storage unit. 

MOTOR-GENERATOR SETS 

Motor-generator power sources are used for the major 
modules (processor, GIOC, EMM and system controller) to 
provide protection against line variation, momentary power 
outage and line noise. The motor-generator has a flywheel 
to carry through momentary power failures and provide 
sufficient power for an orderly shutdown in long power 
failures. Several 3-phase motor generator sets are available. 
The generator output on all units is 208V, 3-phase, 4 wire, 

@@~[PmlJ'~rn[U~~t®®® ____________ _ 
92 '"of, 



60 hertz. The motor input and generator power output are 
shown below. 

Type Line Freq. Line Output 
Number (hertz) Voltage Power (KVA) 

MG8030 60 220/440 31.3 
MG8031 60 440 62.5 
MG8032 60 480 62.5 
MG8033 50 380 62.5 
MG8034 60 208 62.5 

\ 

) 

The motor-generator is a free-standing unit. 

POWER SEQUENCER (OPT825 or OPT826) 

A power sequencer is necessary to control each motor­
generator set. The OPT825 unit controls a 60 hertz 
motor and the OPT826 unit controls a 50 hertz motor. 
Each power sequencer is a wall-mounted unit. 

©@~[pffi'[J~rn[L~~j®®® ____________ _ 

93 



GEN ERAL@ ELECTRIC 

",..' . ~. 
, .' 

, 
.', 

. '.' ; 


	0001
	0002
	001
	002
	003
	004
	005
	006
	007
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	80a
	81
	82
	83
	84
	85
	86
	87
	88
	89
	90
	91
	92
	93
	xBack

